Download or read book Tensorial Methods and Renormalization in Group Field Theories written by Sylvain Carrozza and published by Springer Science & Business Media. This book was released on 2014-04-12 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main focus of this thesis is the mathematical structure of Group Field Theories (GFTs) from the point of view of renormalization theory. Such quantum field theories are found in approaches to quantum gravity related, on the one hand, to Loop Quantum Gravity (LQG) and on the other, to matrix- and tensor models. Background material on these topics, including conceptual and technical aspects, are introduced in the first chapters. The work then goes on to explain how the standard tools of Quantum Field Theory can be generalized to GFTs and exploited to study the large cut-off behaviour and renormalization group transformations of the latter. Among the new results derived in this context are a proof of renormalizability of a three-dimensional GFT with gauge group SU(2), which opens the way to applications of the formalism to quantum gravity.
Download or read book Tensor Network Contractions written by Shi-Ju Ran and published by Springer Nature. This book was released on 2020-01-27 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.
Download or read book Progress in Group Field Theory and Related Quantum Gravity Formalisms written by Steffen Gielen and published by MDPI. This book was released on 2020-07-01 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following the fundamental insights from quantum mechanics and general relativity, geometry itself should have a quantum description; the search for a complete understanding of this description is what drives the field of quantum gravity. Group field theory is an ambitious framework in which theories of quantum geometry are formulated, incorporating successful ideas from the fields of matrix models, ten-sor models, spin foam models and loop quantum gravity, as well as from the broader areas of quantum field theory and mathematical physics. This special issue collects recent work in group field theory and these related approaches, as well as other neighbouring fields (e.g., cosmology, quantum information and quantum foundations, statistical physics) to the extent that these are directly relevant to quantum gravity research.
Download or read book Introduction to Tensor Network Methods written by Simone Montangero and published by Springer. This book was released on 2018-11-28 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of lecture notes briefly introduces the basic concepts needed in any computational physics course: software and hardware, programming skills, linear algebra, and differential calculus. It then presents more advanced numerical methods to tackle the quantum many-body problem: it reviews the numerical renormalization group and then focuses on tensor network methods, from basic concepts to gauge invariant ones. Finally, in the last part, the author presents some applications of tensor network methods to equilibrium and out-of-equilibrium correlated quantum matter. The book can be used for a graduate computational physics course. After successfully completing such a course, a student should be able to write a tensor network program and can begin to explore the physics of many-body quantum systems. The book can also serve as a reference for researchers working or starting out in the field.
Download or read book Random Tensors written by Razvan Gurau and published by Oxford University Press. This book was released on 2017 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces "Random Tensors," a framework for studying random geometries in any dimension. It provides a complete derivation of the key results in the field. Whatever form a theory of Quantum Gravity may take, it must incorporate random geometry.
- Author : Astrid Eichhorn
- Publisher : Frontiers Media SA
- Release : 2021-07-15
- ISBN : 2889710491
- Pages : 298 pages
Coarse Graining in Quantum Gravity Bridging the Gap between Microscopic Models and Spacetime Physics
Download or read book Coarse Graining in Quantum Gravity Bridging the Gap between Microscopic Models and Spacetime Physics written by Astrid Eichhorn and published by Frontiers Media SA. This book was released on 2021-07-15 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1976-06 with total page 1216 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Density Matrix and Tensor Network Renormalization written by Tao Xiang and published by Cambridge University Press. This book was released on 2023-08-31 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Renormalization group theory of tensor network states provides a powerful tool for studying quantum many-body problems and a new paradigm for understanding entangled structures of complex systems. In recent decades the theory has rapidly evolved into a universal framework and language employed by researchers in fields ranging from condensed matter theory to machine learning. This book presents a pedagogical and comprehensive introduction to this field for the first time. After an introductory survey on the major advances in tensor network algorithms and their applications, it introduces step-by-step the tensor network representations of quantum states and the tensor-network renormalization group methods developed over the past three decades. Basic statistical and condensed matter physics models are used to demonstrate how the tensor network renormalization works. An accessible primer for scientists and engineers, this book would also be ideal as a reference text for a graduate course in this area.
Download or read book Random Tensors written by Răzvan Gheorghe Gurău and published by Oxford University Press. This book was released on 2017-06-23 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the creator of the modern theory of random tensors, this book is the first self-contained introductory text to this rapidly developing theory. Starting from notions familiar to the average researcher or PhD student in mathematical or theoretical physics, the book presents in detail the theory and its applications to physics. The recent detections of the Higgs boson at the LHC and gravitational waves at LIGO mark new milestones in Physics confirming long standing predictions of Quantum Field Theory and General Relativity. These two experimental results only reinforce today the need to find an underlying common framework of the two: the elusive theory of Quantum Gravity. Over the past thirty years, several alternatives have been proposed as theories of Quantum Gravity, chief among them String Theory. While these theories are yet to be tested experimentally, key lessons have already been learned. Whatever the theory of Quantum Gravity may be, it must incorporate random geometry in one form or another. This book introduces a framework for studying random geometries in any dimensions. Building on the resounding success of random matrices as theories of random two dimensional surfaces, random tensors are their natural generalization to theories of random geometry in arbitrary dimension. This book shows that many of the celebrated results in random matrices, most notably 't Hooft's 1/N expansion, can be generalized to higher dimensions. It provides a complete and self-contained derivation of the key results on random tensors.
Download or read book Tensor Network States and Effective Particles for Low Dimensional Quantum Spin Systems written by Laurens Vanderstraeten and published by Springer. This book was released on 2017-08-10 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis develops new techniques for simulating the low-energy behaviour of quantum spin systems in one and two dimensions. Combining these developments, it subsequently uses the formalism of tensor network states to derive an effective particle description for one- and two-dimensional spin systems that exhibit strong quantum correlations. These techniques arise from the combination of two themes in many-particle physics: (i) the concept of quasiparticles as the effective low-energy degrees of freedom in a condensed-matter system, and (ii) entanglement as the characteristic feature for describing quantum phases of matter. Whereas the former gave rise to the use of effective field theories for understanding many-particle systems, the latter led to the development of tensor network states as a description of the entanglement distribution in quantum low-energy states.
Download or read book Tensor Valued Random Fields for Continuum Physics written by Anatoliy Malyarenko and published by Cambridge University Press. This book was released on 2019 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a complete description of homogenous and isotropic tensor-valued random fields, including the problems of continuum physics, mathematical tools and applications.
Download or read book Loop Quantum Cosmology written by Guillermo A. Mena Marugán and published by Frontiers Media SA. This book was released on 2022-05-25 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Combinatorial Physics written by Adrian Tanasa and published by Oxford University Press. This book was released on 2021 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the book is to use combinatorial techniques to solve fundamental physics problems, and vice-versa, to use theoretical physics techniques to solve combinatorial problems.
Download or read book The Global Approach to Quantum Field Theory written by Bryce Seligman DeWitt and published by Oxford University Press, USA. This book was released on 2003 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new volume takes a complete look at how classical field theory, quantum mechanics and quantum field theory are interrelated. It takes a global approach and discusses the importance of quantization by relating it to different theories such as tree amplitude and conservation laws. There arespecial chapters devoted to Euclideanization and renormalization, space and time inversion and the closed-time-path formalism.
Download or read book INIS Atomindeks written by and published by . This book was released on 1985 with total page 1122 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Future of Nuclear Structure Challenges and Opportunities in the Microscopic Description of Nuclei written by Luigi Coraggio and published by Frontiers Media SA. This book was released on 2021-03-10 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Progress and Visions in Quantum Theory in View of Gravity written by Felix Finster and published by Springer Nature. This book was released on 2020-04-09 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on a critical discussion of the status and prospects of current approaches in quantum mechanics and quantum field theory, in particular concerning gravity. It contains a carefully selected cross-section of lectures and discussions at the seventh conference “Progress and Visions in Quantum Theory in View of Gravity” which took place in fall 2018 at the Max Planck Institute for Mathematics in the Sciences in Leipzig. In contrast to usual proceeding volumes, instead of reporting on the most recent technical results, contributors were asked to discuss visions and new ideas in foundational physics, in particular concerning foundations of quantum field theory. A special focus has been put on the question of which physical principles of quantum (field) theory can be considered fundamental in view of gravity. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.