EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Tensor Network Algorithms for Three dimensional Quantum Systems

Download or read book Tensor Network Algorithms for Three dimensional Quantum Systems written by Patrick Vlaar and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Strongly correlated systems can give rise to many types of fascinating emergent behavior, such as superconductivity or exotic magnetic phases. Numerical approaches have become essential tools to further our understanding of these systems. An important family is formed by algorithms based on tensor networks. In recent decades, these methods have turned into vital tools to study one- and two-dimensional quantum systems. Extensions of these algorithms to three-dimensional systems, though, have been relatively unexplored. The goal of this thesis is to develop new algorithms to study three-dimensional quantum systems. We make use of a tensor network Ansatz called the infinite projected entangled-pair state (iPEPS), which allows us to directly probe the thermodynamic limit. The main technical challenge is to find ways to evaluate expectation values, which require a contraction of the tensor network. In this thesis, we develop several efficient contraction algorithms both for general three-dimensional quantum systems and for layered two-dimensional quantum systems with weak interlayer coupling. We apply these algorithms to study the Shastry-Sutherland model, which closely describes the layered compound SrCu2(BO3)2. A discrepancy exists, however, in the extent of the plaquette phase, which is significantly smaller in the compound compared to the model. Through our simulations, we find that a possible explanation could be the interlayer coupling, which strongly reduces the extent of the plaquette phase already at weak coupling. With this thesis, we hope to show the potential of tensor networks for the accurate study of three-dimensional strongly-correlated quantum systems."--

Book Tensor Network Contractions

Download or read book Tensor Network Contractions written by Shi-Ju Ran and published by Springer Nature. This book was released on 2020-01-27 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.

Book Introduction to Tensor Network Methods

Download or read book Introduction to Tensor Network Methods written by Simone Montangero and published by Springer. This book was released on 2018-11-28 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of lecture notes briefly introduces the basic concepts needed in any computational physics course: software and hardware, programming skills, linear algebra, and differential calculus. It then presents more advanced numerical methods to tackle the quantum many-body problem: it reviews the numerical renormalization group and then focuses on tensor network methods, from basic concepts to gauge invariant ones. Finally, in the last part, the author presents some applications of tensor network methods to equilibrium and out-of-equilibrium correlated quantum matter. The book can be used for a graduate computational physics course. After successfully completing such a course, a student should be able to write a tensor network program and can begin to explore the physics of many-body quantum systems. The book can also serve as a reference for researchers working or starting out in the field.

Book Tensor Network States and Effective Particles for Low Dimensional Quantum Spin Systems

Download or read book Tensor Network States and Effective Particles for Low Dimensional Quantum Spin Systems written by Laurens Vanderstraeten and published by Springer. This book was released on 2017-08-10 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis develops new techniques for simulating the low-energy behaviour of quantum spin systems in one and two dimensions. Combining these developments, it subsequently uses the formalism of tensor network states to derive an effective particle description for one- and two-dimensional spin systems that exhibit strong quantum correlations. These techniques arise from the combination of two themes in many-particle physics: (i) the concept of quasiparticles as the effective low-energy degrees of freedom in a condensed-matter system, and (ii) entanglement as the characteristic feature for describing quantum phases of matter. Whereas the former gave rise to the use of effective field theories for understanding many-particle systems, the latter led to the development of tensor network states as a description of the entanglement distribution in quantum low-energy states.

Book Tensor Network Contractions

Download or read book Tensor Network Contractions written by Maciej Lewenstein and published by . This book was released on 2020-10-08 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.

Book Quantum Many body Systems and Tensor Network Algorithms

Download or read book Quantum Many body Systems and Tensor Network Algorithms written by Augustine Kshetrimayum and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modelling Non Markovian Quantum Systems Using Tensor Networks

Download or read book Modelling Non Markovian Quantum Systems Using Tensor Networks written by Aidan Strathearn and published by Springer Nature. This book was released on 2020-08-31 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents a revolutionary technique for modelling the dynamics of a quantum system that is strongly coupled to its immediate environment. This is a challenging but timely problem. In particular it is relevant for modelling decoherence in devices such as quantum information processors, and how quantum information moves between spatially separated parts of a quantum system. The key feature of this work is a novel way to represent the dynamics of general open quantum systems as tensor networks, a result which has connections with the Feynman operator calculus and process tensor approaches to quantum mechanics. The tensor network methodology developed here has proven to be extremely powerful: For many situations it may be the most efficient way of calculating open quantum dynamics. This work is abounds with new ideas and invention, and is likely to have a very significant impact on future generations of physicists.

Book Tensor Network Methods for Low dimensional Quantum Systems

Download or read book Tensor Network Methods for Low dimensional Quantum Systems written by Jheng-Wei Li and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Density Matrix and Tensor Network Renormalization

Download or read book Density Matrix and Tensor Network Renormalization written by Tao Xiang and published by Cambridge University Press. This book was released on 2023-08-31 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Renormalization group theory of tensor network states provides a powerful tool for studying quantum many-body problems and a new paradigm for understanding entangled structures of complex systems. In recent decades the theory has rapidly evolved into a universal framework and language employed by researchers in fields ranging from condensed matter theory to machine learning. This book presents a pedagogical and comprehensive introduction to this field for the first time. After an introductory survey on the major advances in tensor network algorithms and their applications, it introduces step-by-step the tensor network representations of quantum states and the tensor-network renormalization group methods developed over the past three decades. Basic statistical and condensed matter physics models are used to demonstrate how the tensor network renormalization works. An accessible primer for scientists and engineers, this book would also be ideal as a reference text for a graduate course in this area.

Book Tensor Network States

    Book Details:
  • Author : Justin Reyes
  • Publisher :
  • Release : 2020
  • ISBN :
  • Pages : 127 pages

Download or read book Tensor Network States written by Justin Reyes and published by . This book was released on 2020 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor network states are ubiquitous in the investigation of quantum many-body (QMB) physics. Their advantage over other state representations is evident from their reduction in the computational complexity required to obtain various quantities of interest, namely observables. Additionally, they provide a natural platform for investigating entanglement properties within a system. In this dissertation, we develop various novel algorithms and optimizations to tensor networks for the investigation of QMB systems, including classical and quantum circuits. Specifically, we study optimizations for the two-dimensional Ising model in a transverse field, we create an algorithm for the k-SAT problem, and we study the entanglement properties of random unitary circuits. In addition to these applications, we reinterpret renormalization group principles from QMB physics in the context of machine learning to develop a novel algorithm for the tasks of classification and regression, and then utilize machine learning architectures for the time evolution of operators in QMB systems.

Book Connecting the Dots  Tensor Network Algorithms for Two Dimensional Strongly Correlated Systems

Download or read book Connecting the Dots Tensor Network Algorithms for Two Dimensional Strongly Correlated Systems written by Juan Camilo Osorio Iregui and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Emergent Phenomena in Correlated Matter

Download or read book Emergent Phenomena in Correlated Matter written by Eva Pavarini and published by Forschungszentrum Jülich. This book was released on 2013 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Machine Learning Meets Quantum Physics

Download or read book Machine Learning Meets Quantum Physics written by Kristof T. Schütt and published by Springer Nature. This book was released on 2020-06-03 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.

Book Looking Inside Jets

    Book Details:
  • Author : Simone Marzani
  • Publisher : Springer
  • Release : 2019-05-11
  • ISBN : 3030157091
  • Pages : 205 pages

Download or read book Looking Inside Jets written by Simone Marzani and published by Springer. This book was released on 2019-05-11 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.

Book Tensor Networks for Dimensionality Reduction and Large scale Optimization

Download or read book Tensor Networks for Dimensionality Reduction and Large scale Optimization written by Andrzej Cichocki and published by . This book was released on 2016 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern applications in engineering and data science are increasingly based on multidimensional data of exceedingly high volume, variety, and structural richness. However, standard machine learning algorithms typically scale exponentially with data volume and complexity of cross-modal couplings - the so called curse of dimensionality - which is prohibitive to the analysis of large-scale, multi-modal and multi-relational datasets. Given that such data are often efficiently represented as multiway arrays or tensors, it is therefore timely and valuable for the multidisciplinary machine learning and data analytic communities to review low-rank tensor decompositions and tensor networks as emerging tools for dimensionality reduction and large scale optimization problems. Our particular emphasis is on elucidating that, by virtue of the underlying low-rank approximations, tensor networks have the ability to alleviate the curse of dimensionality in a number of applied areas. In Part 1 of this monograph we provide innovative solutions to low-rank tensor network decompositions and easy to interpret graphical representations of the mathematical operations on tensor networks. Such a conceptual insight allows for seamless migration of ideas from the flat-view matrices to tensor network operations and vice versa, and provides a platform for further developments, practical applications, and non-Euclidean extensions. It also permits the introduction of various tensor network operations without an explicit notion of mathematical expressions, which may be beneficial for many research communities that do not directly rely on multilinear algebra. Our focus is on the Tucker and tensor train (TT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide linearly or even super-linearly (e.g., logarithmically) scalable solutions, as illustrated in detail in Part 2 of this monograph.

Book Tensor Network Descriptions of Quantum Entanglement in Path Integrals  Thermalisation and Machine Learning

Download or read book Tensor Network Descriptions of Quantum Entanglement in Path Integrals Thermalisation and Machine Learning written by Andrew Hallam and published by . This book was released on 2019 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the major ways in which quantum mechanics differs from classical mechanics is the existence of special quantum correlations - entanglement. Typical quantum states are highly entangled, making them complex and inefficient to represent. Physically interesting states are unusual, they are only weakly entangled. By restricting ourselves to weak entanglement, efficient representations of quantum states can be found. A tensor network is constructed by taking objects called tensors that encode spatially local information and gluing them together to create a large network that describes a complex quantum state. The manner in which the tensors are connected defines the entanglement structure of the quantum state. Tensors networks are therefore a natural framework for describing physical behaviour of complex quantum systems. In this thesis we utilize tensor networks to solve a number of interesting problems. Firstly, we study a Feynman path integral written over tensor network states. As a sum over classical trajectories, a Feynman path integral can struggle to capture entanglement. Combining the path integral with tensor networks overcomes this.We consider the effect of quadratic fluctuations on the tensor network path integral and calculate corrections to observables numerically and analytically. We also study the time evolution of complex quantum systems. By projecting quantum dynamics onto a classical phase space defined using tensor networks, we relate thermal behaviour of quantum systems to classical chaos. In doing so we demonstrate a relationship between entanglement growth and chaos. By studying the dynamics of coupled quantum chains we also gain insight into how quantum correlations spread over time. As noted, tensor networks are remarkably efficient. In the final section of this thesis we use tensor networks to create compressed machine learning algorithms. Their efficiency means that tensor networks can use $50$ times fewer parameters with no significant decrease in performance.