EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Technology Mapping and Optimization for Reversible and Quantum Circuits

Download or read book Technology Mapping and Optimization for Reversible and Quantum Circuits written by Zahra Sasanian and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum information processing is of interest as it offers the potential for a new generation of very powerful computers supporting novel computational paradigms. Over the last couple of decades, different aspects of quantum computers ranging from quantum algorithms to quantum physical design have received growing attention. One of the most important research areas is the synthesis and post-synthesis optimization of reversible and quantum circuits. Many synthesis and optimization approaches can be found in the literature, yet, due to the complexity of the problem, finding approaches leading to optimal, or near optimal, results is still an open problem. The synthesized circuits are usually evaluated based on quantum cost models. Therefore, they are often technology mapped to circuits of more primitive gates. To this end, various technology mapping approaches have also been proposed in the past few years. Related work shows an existing gap in optimized technology mapping for reversible and quantum circuits. In this dissertation, an optimized technology mapping design flow is introduced for mapping reversible circuits to quantum circuits. The contributions of this dissertation are classified as follows:- New reversible circuit optimization methods. - Optimized reversible to quantum mapping approaches.- New quantum gate libraries and new cost models for reversible gates based on the new libraries. - Quantum circuit optimization approaches. The steps above, form an optimized flow for mapping reversible circuits to quantum circuits. At each step of the design flow optimized and consistent approaches are suggested with the goal of reducing the quantum cost of the synthesized reversible circuits. The evaluations show that the proposed mapping methodology leads to significant improvement in the quantum cost of the existing benchmark circuits.

Book Reversible and Quantum Circuits

Download or read book Reversible and Quantum Circuits written by Nabila Abdessaied and published by Springer. This book was released on 2016-06-06 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a new optimization flow for quantum circuits realization. At the reversible level, optimization algorithms are presented to reduce the quantum cost. Then, new mapping approaches to decompose reversible circuits to quantum circuits using different quantum libraries are described. Finally, optimization techniques to reduce the quantum cost or the delay are applied to the resulting quantum circuits. Furthermore, this book studies the complexity of reversible circuits and quantum circuits from a theoretical perspective.

Book Reversible Logic Synthesis Methodologies with Application to Quantum Computing

Download or read book Reversible Logic Synthesis Methodologies with Application to Quantum Computing written by Saleem Mohammed Ridha Taha and published by Springer. This book was released on 2015-09-24 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book opens the door to a new interesting and ambitious world of reversible and quantum computing research. It presents the state of the art required to travel around that world safely. Top world universities, companies and government institutions are in a race of developing new methodologies, algorithms and circuits on reversible logic, quantum logic, reversible and quantum computing and nano-technologies. In this book, twelve reversible logic synthesis methodologies are presented for the first time in a single literature with some new proposals. Also, the sequential reversible logic circuitries are discussed for the first time in a book. Reversible logic plays an important role in quantum computing. Any progress in the domain of reversible logic can be directly applied to quantum logic. One of the goals of this book is to show the application of reversible logic in quantum computing. A new implementation of wavelet and multiwavelet transforms using quantum computing is performed for this purpose. Researchers in academia or industry and graduate students, who work in logic synthesis, quantum computing, nano-technology, and low power VLSI circuit design, will be interested in this book.

Book Synthesis of Quantum Circuits vs  Synthesis of Classical Reversible Circuits

Download or read book Synthesis of Quantum Circuits vs Synthesis of Classical Reversible Circuits written by Alexis De Vos and published by Morgan & Claypool Publishers. This book was released on 2018-07-03 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: At first sight, quantum computing is completely different from classical computing. Nevertheless, a link is provided by reversible computation. Whereas an arbitrary quantum circuit, acting on ?? qubits, is described by an ?? × ?? unitary matrix with ??=2??, a reversible classical circuit, acting on ?? bits, is described by a 2?? × 2?? permutation matrix. The permutation matrices are studied in group theory of finite groups (in particular the symmetric group ????); the unitary matrices are discussed in group theory of continuous groups (a.k.a. Lie groups, in particular the unitary group U(??)). Both the synthesis of a reversible logic circuit and the synthesis of a quantum logic circuit take advantage of the decomposition of a matrix: the former of a permutation matrix, the latter of a unitary matrix. In both cases the decomposition is into three matrices. In both cases the decomposition is not unique.

Book Towards a Design Flow for Reversible Logic

Download or read book Towards a Design Flow for Reversible Logic written by Robert Wille and published by Springer Science & Business Media. This book was released on 2010-07-28 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of computing machines found great success in the last decades. But the ongoing miniaturization of integrated circuits will reach its limits in the near future. Shrinking transistor sizes and power dissipation are the major barriers in the development of smaller and more powerful circuits. Reversible logic p- vides an alternative that may overcome many of these problems in the future. For low-power design, reversible logic offers signi?cant advantages since zero power dissipation will only be possible if computation is reversible. Furthermore, quantum computation pro?ts from enhancements in this area, because every quantum circuit is inherently reversible and thus requires reversible descriptions. However, since reversible logic is subject to certain restrictions (e.g. fanout and feedback are not directly allowed), the design of reversible circuits signi?cantly differs from the design of traditional circuits. Nearly all steps in the design ?ow (like synthesis, veri?cation, or debugging) must be redeveloped so that they become applicable to reversible circuits as well. But research in reversible logic is still at the beginning. No continuous design ?ow exists so far. Inthisbook,contributionstoadesign?owforreversiblelogicarepresented.This includes advanced methods for synthesis, optimization, veri?cation, and debugging.

Book Reversible Logic Synthesis

Download or read book Reversible Logic Synthesis written by Anas N. Al-Rabadi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first time in book form, this comprehensive and systematic monograph presents methods for the reversible synthesis of logic functions and circuits. It is illustrated with a wealth of examples and figures that describe in detail the systematic methodologies of synthesis using reversible logic.

Book Reversible Computation

Download or read book Reversible Computation written by Shigeru Yamashita and published by Springer. This book was released on 2014-07-05 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 6th International Conference on Reversible Computation, RC 2014, held in Kyoto, Japan, in July 2014. The 14 contributions presented together with three invited talks were carefully reviewed and selected from 27 submissions. The papers are organized in topical sections on automata for reversible computation; notation and languages for reversible computation; synthesis and optimization for reversible circuits; validation and representation of quantum logic.

Book Synthesis of Reversible Logic

Download or read book Synthesis of Reversible Logic written by Md. Mazder Rahman and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Reversible logic plays an important role in quantum computation. Quantum computations are known to have massive parallelism and hence, exponential speed-up is possible in some algorithms. Logic operations in quantum systems are unitary transformations that are reversible. A computing system that is logically reversible can be physically reversible. Therefore, research in reversible logic can lead to the design of powerful computing devices. The synthesis of reversible logic targeted to the construction of quantum circuits is significantly different from non-reversible logic synthesis. The underlying synthesis procedures start from Boolean function specifications, and generate circuits that are realizable with quantum technologies. In general, for a given Boolean function, the design flow employs a series of methods such as embedding the Boolean function into a reversible one, finding a Multiple-Controlled-Toffoli (MCT) realization, minimizing the Toffoli circuit, decomposing the Toffoli circuit into a quantum circuit, and optimizing the quantum circuit. These approaches are mostly heuristics that show significant room for improvement. The aim of this thesis is to improve existing heuristics. One such optimization heuristic is template matching. The current set of templates (rewriting rules) used in template matching is incomplete. Moreover, the exact mapping of gate sequences of a template to gate sequences of a circuit is a complex problem that has not been solved. If minimal circuits are known, then they can be used as comparison for heuristic methods. However, the entangled state - a phenomenon in quantum computation - makes it difficult to develop a synthesis method that gives minimal circuits. Moreover, different technologies have different constraints. For example, Ion Trapped technology requires Linear Nearest Neighbor (LNN) circuits. Heuristics for constructing LNN circuits use SWAP gates that results in a dramatic increase in the number of gates. There are many possibilities for modelling universal quantum gate libraries; however, which library would be the best suited for quantum technologies is an open question. In this thesis, we first present an exhaustive search method that finds minimal circuits of 3 qubits that serve as benchmarks. We give a new definition of template with a set of properties that show that minimal circuits are embedded in templates. Hence, we prove that a complete set of templates has the power of obtaining a minimal circuit from any non-minimal circuit by using template matching. The properties of templates also lead us to the development of algorithms for constructing new templates. A graph-based data structure enables an efficient formulation as well as implementation of matching problems. A set of algorithms for exact template matching is developed. The efficiency of the proposed algorithms is verified by optimizing the standard benchmarks. We analyse different models as well as minimal ways of constructing LNN circuits without the use of SWAP gates. Our proposed heuristic takes less time to obtain reduced LNN circuits than other methods in the literature. We suggest that if a 2-qubit function can be realized by a single 2-qubit quantum gate, then a new gate library can be built. By considering such a gate has unit quantum cost, we find two different gate libraries that lead to significant cost reductions in realizing 3-qubit minimal circuits."--Pages ii-iv.

Book Reversible Computation

Download or read book Reversible Computation written by Gerhard W. Dueck and published by Springer. This book was released on 2013-06-29 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 5th International Conference on Reversible Computation, RC 2013, held in Victoria, BC, Canada, in July 2013. The 19 contributions presented together with one invited paper were carefully reviewed and selected from 37 submissions. The papers are organized in topical sections on physical implementation; arithmetic; programming and data structures; modelling; synthesis and optimization; and alternative technologies.

Book Introducing Design Automation for Quantum Computing

Download or read book Introducing Design Automation for Quantum Computing written by Alwin Zulehner and published by Springer Nature. This book was released on 2020-04-07 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers readers an easy introduction into quantum computing as well as into the design for corresponding devices. The authors cover several design tasks which are important for quantum computing and introduce corresponding solutions. A special feature of the book is that those tasks and solutions are explicitly discussed from a design automation perspective, i.e., utilizing clever algorithms and data structures which have been developed by the design automation community for conventional logic (i.e., for electronic devices and systems) and are now applied for this new technology. By this, relevant design tasks can be conducted in a much more efficient fashion than before – leading to improvements of several orders of magnitude (with respect to runtime and other design objectives). Describes the current state of the art for designing quantum circuits, for simulating them, and for mapping them to real hardware; Provides a first comprehensive introduction into design automation for quantum computing that tackles practically relevant tasks; Targets the quantum computing community as well as the design automation community, showing both perspectives to quantum computing, and what impressive improvements are possible when combining the knowledge of both communities.

Book Reversible Computation  Extending Horizons of Computing

Download or read book Reversible Computation Extending Horizons of Computing written by Irek Ulidowski and published by Springer Nature. This book was released on 2020-05-13 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first.

Book Reversible Computation

Download or read book Reversible Computation written by Iain Phillips and published by Springer. This book was released on 2017-06-26 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 9th International Conference on Reversible Computation, RC 2017, held in Kolkata, India, in July 2017. The 13 full and 5 short papers included in this volume together with one invited paper were carefully reviewed and selected from 47 submissions. The papers are organized in the following topical sections: foundations; reversible circuit synthesis; reversible circuit optimization; testing and fault tolerance; and quantum circuits.

Book Design of Regular Reversible Quantum Circuits

Download or read book Design of Regular Reversible Quantum Circuits written by Marek Perkowski and published by LAP Lambert Academic Publishing. This book was released on 2011-09 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: The computing power in terms of speed and capacity of today's digital computers has improved tremendously in the last decade. This improvement came mainly due to a revolution in manufacturing technology by developing the ability to manufacture smaller devices and by integrating more devices on a single die. Further development of the current technology will be restricted by physical limits since it won't be possible to shrink devices beyond a certain size. Eventually, classical electrical circuits will encounter the barrier of quantum mechanics. The laws of quantum mechanics can be used for building computing systems that work on the principles of quantum mechanics. Thus quantum computing has drawn the interest of many top scientists in the world. Ion Trap technology is one of the most promising prospective technologies for building quantum computers. This technology allows the placement of qubits - ions in 1-, 2- and 3-dimensional regular structures. This book presents efficient algorithms and methodologies for designing reversible quantum circuits.

Book VLSI

    Book Details:
  • Author : Tomasz Wojcicki
  • Publisher : CRC Press
  • Release : 2014-10-24
  • ISBN : 146659909X
  • Pages : 490 pages

Download or read book VLSI written by Tomasz Wojcicki and published by CRC Press. This book was released on 2014-10-24 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently the world celebrated the 60th anniversary of the invention of the first transistor. The first integrated circuit (IC) was built a decade later, with the first microprocessor designed in the early 1970s. Today, ICs are a part of nearly every aspect of our daily lives. They help us live longer and more comfortably, and do more, faster. All this is possible because of the relentless search for new materials, circuit designs, and ideas happening on a daily basis at industrial and academic institutions around the globe. Showcasing the latest advances in very-large-scale integrated (VLSI) circuits, VLSI: Circuits for Emerging Applications provides a balanced view of industrial and academic developments beyond silicon and complementary metal–oxide–semiconductor (CMOS) technology. From quantum-dot cellular automata (QCA) to chips for cochlear implants, this must-have resource: Investigates the trend of combining multiple cores in a single chip to boost performance of the overall system Describes a novel approach to enable physically unclonable functions (PUFs) using intrinsic features of a VLSI chip Examines the VLSI implementations of major symmetric and asymmetric key cryptographic algorithms, hash functions, and digital signatures Discusses nonvolatile memories such as resistive random-access memory (Re-RAM), magneto-resistive RAM (MRAM), and floating-body RAM (FB-RAM) Explores organic transistors, soft errors, photonics, nanoelectromechanical (NEM) relays, reversible computation, bioinformatics, asynchronous logic, and more VLSI: Circuits for Emerging Applications presents cutting-edge research, design architectures, materials, and uses for VLSI circuits, offering valuable insight into the current state of the art of micro- and nanoelectronics.

Book In Memory Computing

Download or read book In Memory Computing written by Saeideh Shirinzadeh and published by Springer. This book was released on 2019-05-22 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes a comprehensive approach for synthesis and optimization of logic-in-memory computing hardware and architectures using memristive devices, which creates a firm foundation for practical applications. Readers will get familiar with a new generation of computer architectures that potentially can perform faster, as the necessity for communication between the processor and memory is surpassed. The discussion includes various synthesis methodologies and optimization algorithms targeting implementation cost metrics including latency and area overhead as well as the reliability issue caused by short memory lifetime. Presents a comprehensive synthesis flow for the emerging field of logic-in-memory computing; Describes automated compilation of programmable logic-in-memory computer architectures; Includes several effective optimization algorithm also applicable to classical logic synthesis; Investigates unbalanced write traffic in logic-in-memory architectures and describes wear leveling approaches to alleviate it.

Book Design and Testing of Reversible Logic

Download or read book Design and Testing of Reversible Logic written by Ashutosh Kumar Singh and published by Springer. This book was released on 2019-07-29 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book compiles efficient design and test methodologies for the implementation of reversible logic circuits. The methodologies covered in the book are design approaches, test approaches, fault tolerance in reversible circuits and physical implementation techniques. The book also covers the challenges and the reversible logic circuits to meet these challenges stimulated during each stage of work cycle. The novel computing paradigms are being explored to serve as a basis for fast and low power computation.

Book Synthesis  Design and Test of Reversible Circuits Employing Classical Techniques

Download or read book Synthesis Design and Test of Reversible Circuits Employing Classical Techniques written by Sayeeda Sultana and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Over the last few years, research on reversible logic emerged as an important topic in many directions starting from synthesis towards test, debugging and verification as well as arithmetic designs. The motivation behind reversible computation comes from low power dissipation and close relation to quantum circuits, which, in the near future, could become a competitor to current classical circuits. As reversible circuits are still relatively new, the biggest research impact is on synthesis of such circuits. In the first part of this thesis, we present a synthesis approach to realize large reversible circuits based on classical technology mapping. The irreversible nature of most of the original algorithms makes the synthesis of reversible circuits from irreversible specifications a challenging task. A large part of the existing algorithms, although optimized in garbage bits and gate counts, are restricted to small functions, while some approaches address large functions but are costly in terms of gate count, additional lines and quantum cost. A synthesis solution for large circuits with less quantum cost and garbage bits is presented in this thesis by avoiding permutation based reversible embedding.In addition, we present an indirect way of realizing arithmetic circuits avoiding the direct translation of classical truth table with better performance with respect to various reversible parameters. We develop an improved reversible controlled adder/subtractor with overflow detection to enhance reliability. We use this adder/subtractor module with slight modification to implement some complex designs such as reversible square-root circuit, comparator for signed numbers and finally a new integrated module of reversible arithmetic logic unit, which encapsulates most of the operations in classical realization with less number of control lines. This module intends to perform the basic mathematical operations of addition, subtraction with overflow detection, comparison, as well as logic operations AND, OR, XOR and some negated logical functions such as NAND, NOR and XNOR including implication. Thus our design is very efficient and versatile with less number of lines and quantum cost.Apart from synthesis and designs, testing must also be brought onboard to accommodate the reliable implementation of reversible logic. Our final part of the thesis addresses this issue. To date, most reversible circuit fault models include stuck-at-value, missing gate fault and control point faults of Toffoli network. Now-a-days, the synthesis process is not restricted to standard reversible gates, rather some designs especially arithmetic circuits include other gates. In such realization, failures can happen due to erroneous replacements or incorrect cascading of gates, which cannot be defined with existing fault model alone. Thus in this thesis, we present two fault models namely gate replacement fault and wire replacement fault which target circuits implemented using any reversible gate library. To test such faults, three testing schemes are proposed by adopting the conventional testing methods for irreversible circuits based on Boolean Satisfiability (SAT) formulation. In particular, a new Reversible Test Miter is constructed, which, along with backtracking, speed up detection gate and wire replacement faults with less memory. In addition, on a different study, the testing feature of modular reversible design is investigated and presented in this thesis showing that the same test set of basic block is applicable for cascaded design. We hope our effort on synthesis, design and test of reversible circuits will enrich their viable technological realization." --