EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book System Modeling and Identification

Download or read book System Modeling and Identification written by Rolf Johansson and published by . This book was released on 1993 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: An exploration of physical modelling and experimental issues that considers identification of structured models such as continuous-time linear systems, multidimensional systems and nonlinear systems. It gives a broad perspective on modelling, identification and its applications.

Book Modeling and Identification of Linear Parameter Varying Systems

Download or read book Modeling and Identification of Linear Parameter Varying Systems written by Roland Toth and published by Springer Science & Business Media. This book was released on 2010-06-13 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through the past 20 years, the framework of Linear Parameter-Varying (LPV) systems has become a promising system theoretical approach to h- dle the controlof mildly nonlinear and especially position dependent systems which are common in mechatronic applications and in the process ind- try. The birth of this system class was initiated by the need of engineers to achieve better performance for nonlinear and time-varying dynamics, c- mon in many industrial applications, than what the classical framework of Linear Time-Invariant (LTI) control can provide. However, it was also a p- mary goal to preserve simplicity and “re-use” the powerful LTI results by extending them to the LPV case. The progress continued according to this philosophy and LPV control has become a well established ?eld with many promising applications. Unfortunately, modeling of LPV systems, especially based on measured data (which is called system identi?cation) has seen a limited development sincethebirthoftheframework. Currentlythisbottleneck oftheLPVfra- work is halting the transfer of the LPV theory into industrial use. Without good models that ful?ll the expectations of the users and without the und- standing how these models correspond to the dynamics of the application, it is di?cult to design high performance LPV control solutions. This book aims to bridge the gap between modeling and control by investigating the fundamental questions of LPV modeling and identi?cation. It explores the missing details of the LPV system theory that have hindered the formu- tion of a well established identi?cation framework.

Book Modeling  Identification and Simulation of Dynamical Systems

Download or read book Modeling Identification and Simulation of Dynamical Systems written by P. P. J. van den Bosch and published by CRC Press. This book was released on 2020-12-17 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an in-depth introduction to the areas of modeling, identification, simulation, and optimization. These scientific topics play an increasingly dominant part in many engineering areas such as electrotechnology, mechanical engineering, aerospace, and physics. This book represents a unique and concise treatment of the mutual interactions among these topics. Techniques for solving general nonlinear optimization problems as they arise in identification and many synthesis and design methods are detailed. The main points in deriving mathematical models via prior knowledge concerning the physics describing a system are emphasized. Several chapters discuss the identification of black-box models. Simulation is introduced as a numerical tool for calculating time responses of almost any mathematical model. The last chapter covers optimization, a generally applicable tool for formulating and solving many engineering problems.

Book Mastering System Identification in 100 Exercises

Download or read book Mastering System Identification in 100 Exercises written by Johan Schoukens and published by John Wiley & Sons. This book was released on 2012-04-02 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book enables readers to understand system identification and linear system modeling through 100 practical exercises without requiring complex theoretical knowledge. The contents encompass state-of-the-art system identification methods, with both time and frequency domain system identification methods covered, including the pros and cons of each. Each chapter features MATLAB exercises, discussions of the exercises, accompanying MATLAB downloads, and larger projects that serve as potential assignments in this learn-by-doing resource.

Book System Identification

Download or read book System Identification written by Karel J. Keesman and published by Springer Science & Business Media. This book was released on 2011-05-16 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.

Book Nonlinear system identification  1  Nonlinear system parameter identification

Download or read book Nonlinear system identification 1 Nonlinear system parameter identification written by Robert Haber and published by Springer Science & Business Media. This book was released on 1999 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Principles of System Identification

Download or read book Principles of System Identification written by Arun K. Tangirala and published by CRC Press. This book was released on 2018-10-08 with total page 881 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.The MATLAB scripts and SIMULINK models used as examples and case studies in the book are also available on the author's website: http://arunkt.wix.com/homepage#!textbook/c397

Book Adaptive Learning Methods for Nonlinear System Modeling

Download or read book Adaptive Learning Methods for Nonlinear System Modeling written by Danilo Comminiello and published by Butterworth-Heinemann. This book was released on 2018-06-11 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others. This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems. - Presents the key trends and future perspectives in the field of nonlinear signal processing and adaptive learning. - Introduces novel solutions and improvements over the state-of-the-art methods in the very exciting area of online and adaptive nonlinear identification. - Helps readers understand important methods that are effective in nonlinear system modelling, suggesting the right methodology to address particular issues.

Book Modeling  Identification and Control Methods in Renewable Energy Systems

Download or read book Modeling Identification and Control Methods in Renewable Energy Systems written by Nabil Derbel and published by Springer. This book was released on 2018-12-24 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the research and experiments in the fields of modeling and control systems have spent significant efforts to find rules from various complicated phenomena by principles, observations, measured data, logic derivations. The rules are normally summarized as concise and quantitative expressions or “models”. “Identification” provides mechanisms to establish the models and “control” provides mechanisms to improve system performances. This book reflects the relevant studies and applications in the area of renewable energies, with the latest research from interdisciplinary theoretical studies, computational algorithm development to exemplary applications. It discusses how modeling and control methods such as recurrent neural network, Pitch Angle Control, Fuzzy control, Sliding Mode Control and others are used in renewable systems. It covers topics as photovoltaic systems, wind turbines, maximum power point tracking, batteries for renewable energies, solar energy, thermal energy and so on. This book is edited and written by leading experts in the field and offers an ideal reference guide for researchers and engineers in the fields of electrical/electronic engineering, control system and energy.

Book Modeling   Identification of Dynamic Systems

Download or read book Modeling Identification of Dynamic Systems written by Lennart Ljung and published by . This book was released on 2016 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonlinear System Identification

Download or read book Nonlinear System Identification written by Oliver Nelles and published by Springer Nature. This book was released on 2020-09-09 with total page 1235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides engineers and scientists in academia and industry with a thorough understanding of the underlying principles of nonlinear system identification. It equips them to apply the models and methods discussed to real problems with confidence, while also making them aware of potential difficulties that may arise in practice. Moreover, the book is self-contained, requiring only a basic grasp of matrix algebra, signals and systems, and statistics. Accordingly, it can also serve as an introduction to linear system identification, and provides a practical overview of the major optimization methods used in engineering. The focus is on gaining an intuitive understanding of the subject and the practical application of the techniques discussed. The book is not written in a theorem/proof style; instead, the mathematics is kept to a minimum, and the ideas covered are illustrated with numerous figures, examples, and real-world applications. In the past, nonlinear system identification was a field characterized by a variety of ad-hoc approaches, each applicable only to a very limited class of systems. With the advent of neural networks, fuzzy models, Gaussian process models, and modern structure optimization techniques, a much broader class of systems can now be handled. Although one major aspect of nonlinear systems is that virtually every one is unique, tools have since been developed that allow each approach to be applied to a wide variety of systems.

Book System Identification

    Book Details:
  • Author : Rik Pintelon
  • Publisher : John Wiley & Sons
  • Release : 2004-04-05
  • ISBN : 0471660957
  • Pages : 644 pages

Download or read book System Identification written by Rik Pintelon and published by John Wiley & Sons. This book was released on 2004-04-05 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrical Engineering System Identification A Frequency Domain Approach How does one model a linear dynamic system from noisy data? This book presents a general approach to this problem, with both practical examples and theoretical discussions that give the reader a sound understanding of the subject and of the pitfalls that might occur on the road from raw data to validated model. The emphasis is on robust methods that can be used with a minimum of user interaction. Readers in many fields of engineering will gain knowledge about: * Choice of experimental setup and experiment design * Automatic characterization of disturbing noise * Generation of a good plant model * Detection, qualification, and quantification of nonlinear distortions * Identification of continuous- and discrete-time models * Improved model validation tools and from the theoretical side about: * System identification * Interrelations between time- and frequency-domain approaches * Stochastic properties of the estimators * Stochastic analysis System Identification: A Frequency Domain Approach is written for practicing engineers and scientists who do not want to delve into mathematical details of proofs. Also, it is written for researchers who wish to learn more about the theoretical aspects of the proofs. Several of the introductory chapters are suitable for undergraduates. Each chapter begins with an abstract and ends with exercises, and examples are given throughout.

Book Nonlinear System Identification

Download or read book Nonlinear System Identification written by Oliver Nelles and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written from an engineering point of view, this book covers the most common and important approaches for the identification of nonlinear static and dynamic systems. The book also provides the reader with the necessary background on optimization techniques, making it fully self-contained. The new edition includes exercises.

Book Modelling and Identification with Rational Orthogonal Basis Functions

Download or read book Modelling and Identification with Rational Orthogonal Basis Functions written by Peter S.C. Heuberger and published by Springer Science & Business Media. This book was released on 2005-06-30 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Models of dynamical systems are of great importance in almost all fields of science and engineering and specifically in control, signal processing and information science. A model is always only an approximation of a real phenomenon so that having an approximation theory which allows for the analysis of model quality is a substantial concern. The use of rational orthogonal basis functions to represent dynamical systems and stochastic signals can provide such a theory and underpin advanced analysis and efficient modelling. It also has the potential to extend beyond these areas to deal with many problems in circuit theory, telecommunications, systems, control theory and signal processing. Modelling and Identification with Rational Orthogonal Basis Functions affords a self-contained description of the development of the field over the last 15 years, furnishing researchers and practising engineers working with dynamical systems and stochastic processes with a standard reference work.

Book Modelling and Control of Dynamic Systems Using Gaussian Process Models

Download or read book Modelling and Control of Dynamic Systems Using Gaussian Process Models written by Juš Kocijan and published by Springer. This book was released on 2015-11-21 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.

Book System Identification

Download or read book System Identification written by Lennart Ljung and published by Pearson Education. This book was released on 1998-12-29 with total page 875 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field's leading text, now completely updated. Modeling dynamical systems — theory, methodology, and applications. Lennart Ljung's System Identification: Theory for the User is a complete, coherent description of the theory, methodology, and practice of System Identification. This completely revised Second Edition introduces subspace methods, methods that utilize frequency domain data, and general non-linear black box methods, including neural networks and neuro-fuzzy modeling. The book contains many new computer-based examples designed for Ljung's market-leading software, System Identification Toolbox for MATLAB. Ljung combines careful mathematics, a practical understanding of real-world applications, and extensive exercises. He introduces both black-box and tailor-made models of linear as well as non-linear systems, and he describes principles, properties, and algorithms for a variety of identification techniques: Nonparametric time-domain and frequency-domain methods. Parameter estimation methods in a general prediction error setting. Frequency domain data and frequency domain interpretations. Asymptotic analysis of parameter estimates. Linear regressions, iterative search methods, and other ways to compute estimates. Recursive (adaptive) estimation techniques. Ljung also presents detailed coverage of the key issues that can make or break system identification projects, such as defining objectives, designing experiments, controlling the bias distribution of transfer-function estimates, and carefully validating the resulting models. The first edition of System Identification has been the field's most widely cited reference for over a decade. This new edition will be the new text of choice for anyone concerned with system identification theory and practice.

Book Modeling of Dynamic Systems

Download or read book Modeling of Dynamic Systems written by Lennart Ljung and published by Prentice Hall. This book was released on 1994 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a recognized authority in the field of identification and control, this book draws together into a single volume the important aspects of system identification AND physical modelling. KEY TOPICS: Explores techniques used to construct mathematical models of systems based on knowledge from physics, chemistry, biology, etc. (e.g., techniques with so called bond-graphs, as well those which use computer algebra for the modeling work). Explains system identification techniques used to infer knowledge about the behavior of dynamic systems based on observations of the various input and output signals that are available for measurement. Shows how both types of techniques need to be applied in any given practical modeling situation. Considers applications, primarily simulation. MARKET: For practicing engineers who are faced with problems of modeling.