EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Synthesis  Structure and Catalysis of Transition Metal Silyl and Germyl Complexes

Download or read book Synthesis Structure and Catalysis of Transition Metal Silyl and Germyl Complexes written by Christine Maya Popoff and published by . This book was released on 1995 with total page 1314 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Transition Metals in the Synthesis of Complex Organic Molecules

Download or read book Transition Metals in the Synthesis of Complex Organic Molecules written by Louis S. Hegedus and published by University Science Books. This book was released on 1999 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition offers easy access to the field of organotransition metal chemistry. The book covers the basics of transition metal chemistry, giving a practical introduction to organotransition reaction mechanisms.

Book Synthesis  Structure and Catalytic Reactivity of Transition Metal Complexes Containing Unsaturated Organosilicon Ligands

Download or read book Synthesis Structure and Catalytic Reactivity of Transition Metal Complexes Containing Unsaturated Organosilicon Ligands written by Leo J. Procopio and published by . This book was released on 1991 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Syntheses and Reactivity Studies of Transition Metal Complexes Featuring Metal   Main Group Multiple Bonds

Download or read book Syntheses and Reactivity Studies of Transition Metal Complexes Featuring Metal Main Group Multiple Bonds written by Meg E. Fasulo and published by . This book was released on 2012 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ruthenium triflate complex Cp*(PiPr3)RuOTf (1) was generated from the reaction of Cp*(PiPr3)RuCl with Me3SiOTf in dibutyl ether. Complex 1 reacted with primary and secondary silanes to produce a family of Ru(IV) silyl dihydride complexes of the type Cp*(PiPr3)Ru(H)2(SiRR'OTf) (3 - 12). Structural analyses of complexes 8 (R = R' = Ph) and 12 (R = R' = fluorenyl) revealed the presence of a tetrahedral silicon center and a four-legged piano stool geometry about ruthenium. Anion abstraction from Cp*(PiPr3)Ru(H)2(SiHROTf) by [Et3Si*toluene][B(C6F5)4] afforded hydrogen-substituted cationic ruthenium silylene complexes [Cp*(PiPr3)Ru(H)2(=SiHR)][B(C6F5)4] (R = Mes (13), R = Si(SiMe3) (14)) that display a significant Ru - H ... Si interaction, as indicated by relatively large 2JSiH coupling constants (2JSiH = 58.2 Hz (13), 2JSiH = 37.1 Hz (14)). The syntheses of secondary silylene complexes [Cp*(PiPr3)Ru(H)2(=SiRR')][B(C6F5)4] (R = R' = Ph (15); R = Ph, R' = Me (16), R = R' = fluorenyl (17)) were also achieved by anion abstraction with [Et3Si*toluene][B(C6F5)4]. Complexes 15 - 17 do not display strong Ru - H ... Si secondary interactions, as indicated by very small 2JSiH coupling constant values. The cationic ruthenium silylene complex [Cp*(PiPr3)Ru(H)2(SiHMes)] [CB11H6Br6], a catalyst for olefin hydrosilations with primary silanes, was isolated and characterized by X-ray crystallography. Relatively strong interactions between the silylene Si atom and Ru-H hydride ligands appear to reflect a highly electrophilic silicon center. Kinetic and mechanistic studies on hydrosilations with this catalyst reveal a fast, initial addition of the Si-H bond of the silylene complex to the olefin. Subsequent migration of a hydride ligand to silicon produces a 16-electron intermediate, which can be trapped by olefin, resulting in inhibition of catalysis, or intercepted by the silane substrate. The latter reaction pathway, involving oxidative addition of the Si-H bond and a somewhat concomitant loss of product, is the rate-determining step in the catalytic cycle. Reactions of the cationic ruthenium silylene complexes [Cp*(PiPr3)Ru(H)2(=SiRR')][B(C6F5)4] (R = Mes, R' = H, 1; R = R' =Ph, 2) with alkenes, alkynes, ketones, and Lewis bases were explored. Addition of 1-hexene, 3,3-dimethylbut-1-ene, styrene, and cyclopentene to 1 afforded the disubstituted silylene products [Cp*(PiPr3)Ru(H)2(=SiMesR)][B(C6F5)4] (R = Hex, 3; R = CH2CH2tBu, 4; R = CH2CH2Ph, 5; R = C5H9, 6). Analogous reactions with 2-butyne and 3,3-dimethylbut-1-yne yielded the vinyl-substituted silylene complexes [Cp*(PiPr3)Ru(H)2(=Si(CR=CHR')Mes)][B(C6F)4] (R = R' = Me, 7; R = H, R' = tBu, 8). Complex 1 undergoes reactions with ketones to give the heteroatom-substituted silylene complexes [Cp*(PiPr3)Ru(H)2(=Si(OCHPhR)Mes)][B(C6F)4] (R = Ph, 9; R = Me, 10). Interestingly, complexes 3 - 8 display a weak interaction between the hydride ligands and the silicon center, while 9 and 10 exhibit a relatively large interaction (as determined by 2JSiH values). The reaction of isocyanates with 1 resulted in the silyl complexes [Cp*(PiPr3)Ru(H)2(Si(Mes)[n2-O(CH)(NC6H4R)][B(C6F5)4] (R = H, 11; R = CF3, 12), and an intermediate in this transformation is observed. Complex 2 was subjected to various Lewis bases to yield the base-stabilized silylene complexes [Cp*(PiPr3)Ru(H)2(SiPh2*L)][B(C6F)4] (L = DMAP, 13; L = Ph2CO, 14; L = PhCONH2, 15; L = NHMePh, 16, L = tBuSONH2, 18) and the reaction of 1 with NHMePh gave [Cp*(PiPr3)Ru(H)2(SiHMes*NHMePh)][B(C6F)4]. The cationic germylene complex [Cp*(PiPr3)Ru(H)2(=GeMes2)][OTf] (1) was synthesized from the reaction of Cp*(PiPr3)RuOTf with H2GeMes2, and addition of DMAP to 1 yielded the neutral germylene complex [Cp*(PiPr3)Ru(H)(=GeMes2) (2). The reaction of H3GeTrip and Cp*(PiPr3)RuCl gave the germyl complex Cp*(PiPr3)Ru(H)2(GeHTripCl) (3), which undergoes a reaction with Li(Et2O)2[B(C6F5)4] to afford the cationic H-substituted germylene complex [Cp*(PiPr3)Ru(H)2(=GeHTrip)][B(C6F5)4] (4). Addition of 1-hexene, 3,3-dimethylbut-1-ene, styrene, and allyl chloride to 4 afforded the disubstituted germylene products [Cp*(PiPr3)Ru(H)2(=GeTripR)][B(C6F5)4] (R = Hex, 5; R = CH2CH2Ph, 6; R = CH2CH2tBu, 7; R = CH2CH2CH2Cl, 8). Analogous reactions with 2-butyne and 3,3-dimethylbut-1-yne yielded the vinyl-substituted germylene complexes [Cp*(PiPr3)Ru(H)2(=Ge(CR=CHR')Trip)][B(C6F)4] (R = H, R' = tBu, 9; R = R' = Me, 10). New di(phosphine)-supported rhodium and iridium silyl complexes were synthesized. Reactions of the di(t-butylphosphino)ethane complex (dtbpe)Rh(CH2Ph) with Ph2SiH2 and Et2SiH2 resulted in isolation of (dtbpe)Rh(H)2(SiBnPh2) (1, Bn = CH2Ph) and (dtbpe)Rh(H)2(SiBnEt2) (2), respectively. Both 1 and 2 display strong interactions between the rhodium hydride ligands and the silyl ligand, as indicated by large 2JSiH values (44.4 and 52.1 Hz). The reaction of (dtbpm)Rh(CH2Ph) (dtbpm = di(t-butylphosphino)methane) with Mes2SiH2 gave the pseudo-three-coordinate Rh complex (dtbpm)Rh(SiHMes2) (3), which is stabilized in the solid state by agostic interactions between the rhodium center and two C - H bonds of a methyl substituent of a mesityl group. The analogous germanium compound (dtbpm)Rh(GeHMes2) (4) is also accessible. Complex 3 readily undergoes reactions with diphenylacetylene, phenylacetylene, and 2-butyne to give the silaallyl complexes (dtbpm)Rh[Si(CPh=CHPh)Mes2] (5), (dtbpm)Rh[Si(CH=CHPh)Mes2] (7), and (dtbpm)Rh(Si(CMe=CHMe)Mes2) (8) via net insertions into the Si - H bond. The germaallyl complexes (dtbpm)Rh[Ge(CPh=CHPh)Mes2] (6) and (dtbpm)Rh[Ge(CMe=CHMe)Mes2] (9) were synthesized under identical conditions starting from 4. The reaction of (dtbpm)Rh(CH2Ph) with 1 equiv of TripPhSiH2 yielded (dtbpm)Rh(H)2[5,7-diisopropyl-3-methyl-1-phenyl-2,3-dihydro-1H-silaindenyl-kSi] (11), and catalytic investigations indicate that both (dtbpm)Rh(CH2Ph) and 11 are competent catalysts for the conversion of TripPhSiH2 to 5,7-diisopropyl-3-methyl-1-phenyl-2,3-dihydro-1H-silaindole. A dtbpm-supported Ir complex, [(dtbpm)IrCl]€2, was used to access the dinuclear bridging silylene complexes [(dtbpm)IrH](SiPh2)(Cl)2[(dtbpm)IrH] (12) and [(dtbpm)IrH](SiMesCl)( -Cl)(H)[(dtbpm)IrH] (13). The reaction of [(dtbpm)IrCl]2 with a sterically bulky primary silane, (dmp)SiH3 (dmp = 2,6-dimesitylphenyl), allowed isolation of the mononuclear complex (dtbpm)Ir(H)4(10-chloro-1-mesityl-5,7-dimethyl-9,10-dihydrosilaphenanthrene-Si) (14), in which the dmp substituent has undergone C-H activation. The dichloride complex Cp*(Am)WCl2 (1, Am = [(iPrN)2CMe]- ) reacted with the primary silanes PhSiH3, (p-tolyl)SiH3, (3,5-xylyl)SiH3, and (C6F5)SiH3 to produce the W(VI) (silyl)trihydrides Cp*(Am)W(H)3(SiHPhCl) (2), Cp*(Am)W(H)3(SiHTolylCl) (3), Cp*(Am)W(H)3(SiHXylylCl) (4), and Cp*(Am)W(H)3[SiH(C6F5)Cl] (5). In an analogous manner, 1 reacted with PhSiH2Cl to give Cp*(Am)W(H)3(SiPhCl2) (6). Complex 6 can alternatively be quantitatively produced from the reaction of 2 with Ph3CCl. NMR spectroscopic studies and X-ray crystallography reveal an interligand H ... Si interaction between one W - H and the chlorosilyl group, which is further supported by DFT calculations. Complexes of Ru(II) containing the pincer ligand [-N(2-PPh2-4-Me-C6H3)2] (PNPPh) were prepared. The complex (PNPPhH)RuCl2 (1) was treated with 2 equiv AgOTf to produce the triflate complex (PNPPhH)Ru(OTf)2 (2). Complex 1 was also treated with an excess of NaBH4 to give a bimetallic complex [(PNPPh)RuH3]2 (3). A number of methods, including X-ray crystallography, NMR spectroscopy, and computational studies, were used to probe the structure of 3. Addition of Lewis bases to 3 resulted in octahedral complexes containing a hydride ligand trans to a dihydrogen ligand.

Book Application of Transition Metal Catalysts in Organic Synthesis

Download or read book Application of Transition Metal Catalysts in Organic Synthesis written by L. Brandsma and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homogeneous catalysis is an important strategy for the synthesis of high-valued chemicals. L. Brandsma has carefully selected and checked the experimental procedures illustrating the catalytic use of copper, nickel, and palladium compounds in organic synthesis. All procedures are on a preparative scale, make economic use of solvents and catalysts, avoid toxic substances and have high yields.

Book Synthesis  Structure and Catalytic Property of Transition Metal Complexes with Phosphorus nitrogen and Sulfur nitrogen Ligands

Download or read book Synthesis Structure and Catalytic Property of Transition Metal Complexes with Phosphorus nitrogen and Sulfur nitrogen Ligands written by Xiaoping Chen and published by . This book was released on 2002 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Transition Metal Sulphides

    Book Details:
  • Author : Th. Weber
  • Publisher : Springer Science & Business Media
  • Release : 1998-09-30
  • ISBN : 9780792352556
  • Pages : 376 pages

Download or read book Transition Metal Sulphides written by Th. Weber and published by Springer Science & Business Media. This book was released on 1998-09-30 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydrotreating catalysis with transition metal sulphides is one of the most important areas of industrial heterogeneous catalysis. The present book deals with the chemical and catalytic aspects of transition metal sulphides, focusing on their use in hydrotreating catalysis. The book¿s 12 chapters present reviews of solid-state, coordination and organometallic chemistry, surface science and spectroscopic studies, quantum chemical calculations, catalytic studies with model and real catalysts, as well as refinery processes. A presentation of state-of-the-art background to pertinent work in the field. Can be used as an introduction to the chemical and catalytic properties of transition metal sulphides as well as an advanced level reference.

Book Transition metal Silyl Complexes with Novel Coordination Environments

Download or read book Transition metal Silyl Complexes with Novel Coordination Environments written by Richard Hamilton Heyn and published by . This book was released on 1992 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Trans spanning Vs  Cyclometalated Transition Metal Complexes

Download or read book Trans spanning Vs Cyclometalated Transition Metal Complexes written by Clarite Azerraf and published by . This book was released on 2010 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Chemistry and Catalytic Activity of Dehydrogenative Silylation and Hydroboration of Complexes Bearing Semirigid Ligands with Group 14 Elements

Download or read book The Chemistry and Catalytic Activity of Dehydrogenative Silylation and Hydroboration of Complexes Bearing Semirigid Ligands with Group 14 Elements written by Niroshani S. Abeynayake and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporation of silicon in the ligand backbone would yield electron-rich metal complexes upon coordination to transition metal complexes. The coordination chemistry of semirigid benzyl phosphines bearing a single or multiple phosphorus atoms and varying number of Si−H moieties has gained interest in recent years. This dissertation focuses on synthesizing silyl and germyl transition metal complexes of groups 9 and 10. Chapter II presents the synthesis of a family of four coordinated 14-electron rhodium complexes. The newly synthesized complexes were characterized in solution by multinuclear NMR spectroscopy and in the solid-state by single-crystal X-ray diffraction. These d6 complexes possess sawhorse geometry around the rhodium metal center. The catalytic activity of the synthesized Rh complexes and the analogous Ir complex towards hydrosilylation/ dehydrogenative silylation of alkenes is presented in this study. Importantly, it was observed that the selectivity of the catalytic reaction can modify the choice of the metal center, rendering hydrosilylation products upon the use of Rh or dehydrogenative silylated product upon the use of Ir. In chapter III, the results of our investigations on the catalytic activity in dehydrogenative silylation of alkenes by Rh2(OAc)4/ PPh3 system are presented. Sacrificial hydrogen acceptor, norbornene, and PPh3 play a key role in specificity favoring the dehydrogenative silylated product. The substrate scope and the possible mechanistic pathways are reviewed. Chapters IV and V present the synthesis of EP3-type (E = Si, Ge) tetradentate ligands. We describe the synthesis via E−H bond activation and characterization of their nickel and cobalt complexes by spectroscopic means. Additionally, the solid-state structures of the complexes were confirmed by X-ray crystallography. The catalytic activity of the synthesized nickel hydrides was investigated in the hydroboration of aldehydes by pinacolborane (HBpin). The catalytic activity of the synthesized cobalt(I) complex was studied in the presence of (EtO)3SiH with aldehydes and ketones bearing various functional groups under mild conditions. In Chapter VI, the syntheses of octahedral rhodium and iridium [(Ph2P-o-CH2-C6H4)3E]MClH (M = Rh, Ir: E = Si, Ge) complexes bearing EP3-type tetradentate ligands via EH bond activation are presented. We also describe the synthesis and characterization of platinum complexes supported by EP3-type tetradentate ligands.

Book Transition Metal Complexes with P N Ligands and Silylenes  Synthesis and Catalytic Studies

Download or read book Transition Metal Complexes with P N Ligands and Silylenes Synthesis and Catalytic Studies written by Eva Neumann and published by Cuvillier Verlag. This book was released on 2006-02-15 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term ligand [latin, ligare = bind] has its origin in coordination chemistry. It denotes a molecule that is able to bind to a metal center in most cases via one or several free electron pairs.[1] Ligands can be described by the number of electron-pair donor atoms as monodentate, bidentate, tridentate etc. ligands. The latter are also called chelating ligands [greek, chele = (crab’s) claw]. A typical classification of ligands is according to their electronic properties. They serve either as a σ-donating, σ-donating/π-accepting, or σ,π-donating/π-accepting ligands.[2] A more practical, often encountered approach is the classification of ligands according to their donor atoms, especially when larger molecules and molecules containing heteroatoms are regarded (compare 1.2). Coordination chemistry was already established in the 19th century. In 1893 Alfred Werner suggested an octahedral arrangement of ligands coordinated to a central metal ion for many compounds. This explained, for example, the appearance and reactivity of four different cobalt(III) complexes (Figure 1.1), when CoCl2 is dissolved in aqueous ammonia and then oxidized by air to the +3 oxidation state. The formulas of these complexes can be written as depicted in Figure 1.1. Werner’s work was rewarded with the Nobel prize in 1913.[3]

Book Metal Mediated Template Synthesis of Ligands

Download or read book Metal Mediated Template Synthesis of Ligands written by Otilia Costisor and published by World Scientific. This book was released on 2004 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys the relatively new area of the synthesis of organic ligands when metal ions act as a template. In the last fifty years this field has undergone an explosive development, marked by a great amount of literature. The material in the book has been arranged according to the type of chemical reaction involved. In this frame, the basic principles of metal template reactions and the shape of the molecules are considered. Designed to satisfy the demands of students, young researchers doing their PhDs, and those working in the field of coordination chemistry, the book details the role of the metal ions and the specific properties of the formed complexes. Metal Mediated Template Synthesis of Ligands offers a comprehensive analysis with wide-ranging references and provides an extensive overview of research on metal-directed organic ligands over the past five decades. Contents: The Template Effect; Alkylation Reactions; Schiff Condensation; Mannich Condensation; Self Condensation of Nitriles; Self-Assembled Systems. Readership: Upper level undergraduates, graduate students, academics, researchers industrialists in inorganic, solid-state, supramolecular and organic chemistry.