EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Synthesis of Platinum Intermetallic Compounds for Fuel Cell Anode Catalysts

Download or read book Synthesis of Platinum Intermetallic Compounds for Fuel Cell Anode Catalysts written by Laif Robert Alden and published by . This book was released on 2006 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Synthesis and Characterization of Intermetallic Compounds and Transition Metal Nitrides as High performance Proton Exchange Membrane Fuel Cell Materials

Download or read book Synthesis and Characterization of Intermetallic Compounds and Transition Metal Nitrides as High performance Proton Exchange Membrane Fuel Cell Materials written by Weitian Zhao and published by . This book was released on 2014 with total page 67 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the major challenges in fuel cell technologies, particularly for Proton Exchange Membrane Fuel Cells (PEMFCs), is developing effective catalysts for use in both the anode and cathode. Ordered intermetallic compounds have shown considerable potential for fuel cell applications due to their enhanced catalytic activity, better durability and lower cost. In this work, Pd-Sn intermetallic compounds were investigated. PdSn and Pd3Sn nanoparticles were synthesized under air-free conditions and were tested for their electrochemical properties. Both materials showed poor activities in acidic environment for formic acid and methanol oxidation, but enhanced activities under basic conditions. Various electrochemical tests and structural characterization including high-resolution TEM/STEM and EDX were performed to investigate the changes in these materials that might have resulted in such performance. In this thesis, we also focus on developing stable catalyst supports for fuel cell electrodes, another topic in fuel cell research. Motivated by recent studies which revealed the potential of transition metal nitrides as high performance catalyst supports, we developed a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium (oxy)nitride with an inverse opal morphology. Characterization using XRD, SEM, HR-TEM/STEM, TGA and XPS is reported. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology was also demonstrated. iii.

Book Platinum Monolayer Electrocatalysts

Download or read book Platinum Monolayer Electrocatalysts written by Radoslav Adzic and published by Springer Nature. This book was released on 2020-08-11 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes a science and technology of a new type of electrocatalysts consisting of a single atomic layer of platinum on suitable supports. This development helped overcome three major obstacles—catalysts‘ cost, activity, and stability—for a broad range of fuel cell applications. The volume begins with a short introduction to the science of electrocatalysis, covering four reactions important for energy conversion in fuel cells. A description follows of the properties of metal monolayers on electrode surfaces, and underpotential deposition of metals. The authors then describe the concept of Pt monolayer electrocatalysts and its implications and their synthesis by galvanic displacement of less-noble metal monolayers and other methods. The main part of the book presents a discussion of catalysts’ characterization and catalytic properties of Pt monolayers for the four main reactions of electrochemical energy conversion: oxygen reduction and oxidation of hydrogen, methanol and ethanol. The book concludes with a treatment of scale-up syntheses, fuel cell tests, catalysts’ stability and application prospects.

Book Synthesis of Shape specific Platinum Nanoparticles  Their Performance as Fuel Cell Catalysts  and Other Novel Nanocomposite Materials for Alternative Energy Technologies

Download or read book Synthesis of Shape specific Platinum Nanoparticles Their Performance as Fuel Cell Catalysts and Other Novel Nanocomposite Materials for Alternative Energy Technologies written by Jason A. Michel and published by . This book was released on 2007 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modern Developments In Catalysis

Download or read book Modern Developments In Catalysis written by Graham J Hutchings and published by World Scientific. This book was released on 2016-11-14 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: The UK Catalysis Hub is a consortium of universities working together on fundamental and applied research to find out how catalysts work and to improve their effectiveness. The contribution of catalysis to manufacturing contributes to almost 40% of global GDP, making development and innovation within the field integral to industry.Modern Developments in Catalysis provides a review of current research and practise on catalysis, focussing on five main themes: catalysis design, environmental catalysis, catalysis and energy, chemical transformation and biocatalysis and biotransformations. Topics range from complex reactions to the intricacies of catalyst preparation for supported nanoparticles, while chapters illustrate the challenges facing catalytic science and the directions in which the field is developing. Edited by leaders of the UK Hub, this book provides insight into one of the most important areas of modern chemistry — it represents a unique learning opportunity for students and professionals studying and working towards speeding-up, improving and increasing the rate of catalytic reactions in science and industry.

Book Polymers for PEM Fuel Cells

Download or read book Polymers for PEM Fuel Cells written by Hongting Pu and published by John Wiley & Sons. This book was released on 2014-10-01 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Including chemical, synthetic, and cross-disciplinary approaches; this book includes the necessary techniques and technologies to help readers better understand polymers for polymer electrolyte membrane (PEM) fuel cells. The methods in the book are essential to researchers and scientists in the field and will lead to further development in polymer and fuel cell technologies. • Provides complete, essential, and comprehensive overview of polymer applications for PEM fuel cells • Emphasizes state-of-the-art developments and methods, like PEMs for novel fuel cells and polymers for fuel cell catalysts • Includes detailed chapters on major topics, like PEM for direct liquid fuel cells and fluoropolymers and non-fluorinated polymers for PEM • Has relevance to a range of industries – like polymer engineering, materials, and green technology – involved with fuel cell technologies and R&D

Book Synthesis and Characterization of Platinum based Multi component Catalysts for Direct Methanol Fuel Cells

Download or read book Synthesis and Characterization of Platinum based Multi component Catalysts for Direct Methanol Fuel Cells written by Li Ren and published by . This book was released on 2007 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In the thesis work, Pt-based binary, ternary, quaternary alloy anode catalysts supported on sonochemically treated multi-walled carbon nanotubes (CNTs) were synthesized with ethylene glycol reduction of corresponding metal chloride salts. Inductively coupled plasma-mass spectroscopy (ICP-MS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were used for catalyst characterization. Cyclic voltammetry for methanol oxidation and CO stripping were used to evaluate the performance of the catalysts. PtRu nanoparticles supported on CNTs (PtRu/CNT) were prepared under a series of pHs. It was found that the PtRu particle size, composition, and catalytic activity were all sensitive to the deposition pHs. CO stripping results provided the peak potential and active surface area for each catalyst. The atomic ratios tended to approach the predetermined ratio 1:1 with the increase of pH, which is favored by bi-functional catalytic mechanism. PtRu catalysts prepared at higher pHs presented better electrochemical activity toward methanol oxidation. Humidified oxygen treatment of the PtRu/CNT led to improved activity of the catalysts toward methanol electro-oxidation, implying that Ru hydroxide is better than Ru as a co-catalyst. PtRu, PtOs, PtRuOs, and PtRuOsIr nanoparticles supported on CNTs with atomic ratios of Pt:Ru (tr:46), Pt:Os (80:20), Pt:Ru:Os (54:36:10), and Pt:Ru:Os:Ir (44:36:10:5) were prepared. Cyclic voltammetry for the methanol oxidation and CO stripping at the catalysts showed that PtRu/CNT and PtRuOsIr/CNT have the best performance toward methanol oxidation, PtRuOs/CNT has the lowest activity, but PtOs/CNT exhibits better catalytic activity only at potential or 0.73 V"--Abstract, leaf iii.

Book Catalysts for Alcohol fuelled Direct Oxidation Fuel Cells

Download or read book Catalysts for Alcohol fuelled Direct Oxidation Fuel Cells written by Zhen-Xing Liang and published by Royal Society of Chemistry. This book was released on 2012 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a state-of-the-art review on recent advances in nanocatalysts and electrocatalysis in DOFCs.

Book Intermetallic Nanoparticles for Fuel Cell Applications

Download or read book Intermetallic Nanoparticles for Fuel Cell Applications written by Chandrani Roy Chowdhury and published by . This book was released on 2008 with total page 832 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Controlled Synthesis of Pt Ni Bimetallic Catalysts and Study of Their Catalytic Properties

Download or read book Controlled Synthesis of Pt Ni Bimetallic Catalysts and Study of Their Catalytic Properties written by Yuen Wu and published by Springer. This book was released on 2016-05-14 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on the controlled synthesis of Pt–Ni bimetallic nanoparticles and the study of their catalytic properties. It discusses in detail the nucleation mechanism and the growth process of bimetallic systems, which is vital for a deeper understanding of the design of bimetallic catalysts. The author presents four pioneering studies: (1) syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt–Ni nanocrystals and the study of their structure-activity relationship in model hydrogenation reactions; (2) a strategy for designing a concave Pt–Ni alloy using controllable chemical etching; (3) defect-dominated shape recovery of nanocrystals, which is a new synthesis strategy for trimetallic catalysts; (4) a sophisticated construction of Au islands on Pt−Ni, which is an ideal trimetallic nanoframe catalyst. This thesis inspires researchers working in materials, catalysis as well as other interdisciplinary areas.

Book Electrocatalysis in Fuel Cells

Download or read book Electrocatalysis in Fuel Cells written by Minhua Shao and published by Springer Science & Business Media. This book was released on 2013-04-08 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel cells are one of the most promising clean energy conversion devices that can solve the environmental and energy problems in our society. However, the high platinum loading of fuel cells - and thus their high cost - prevents their commercialization. Non- or low- platinum electrocatalysts are needed to lower the fuel cell cost. Electrocatalysis in Fuel Cells: A Non and Low Platinum Approach is a comprehensive book summarizing recent advances of electrocatalysis in oxygen reduction and alcohol oxidation, with a particular focus on non- and low-Pt electrocatalysts. All twenty four chapters were written by worldwide experts in their fields. The fundamentals and applications of novel electrocatalysts are discussed thoroughly in the book. The book is geared toward researchers in the field, postgraduate students and lecturers, and scientists and engineers at fuel cell and automotive companies. It can even be a reference book for those who are interested in this area.

Book Catalysis for Alternative Energy Generation

Download or read book Catalysis for Alternative Energy Generation written by László Guczi and published by Springer Science & Business Media. This book was released on 2012-04-17 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increase of greenhouse gases in the atmosphere and the decrease of the available amount of fossil fuels necessitate finding new alternative and sustainable energy sources in the near future. This book summarizes the role and the possibilities of catalysis in the production of new energy carriers and in the utilization of different energy sources. The main goal of this work is to go beyond those results discussed in recent literature by identifying new developments that may lead to breakthroughs in the production of alternative energy. The book discusses the use of biomass or biomass derived materials as energy sources, hydrogen formation in methanol and ethanol reforming, biodiesel production, and the utilization of biogases. Separate sections also deal with fuel cells, photocatalysis, and solar cells, which are all promising processes for energy production that depend heavily on catalysts.

Book Materials for Fuel Cells

Download or read book Materials for Fuel Cells written by M Gasik and published by Elsevier. This book was released on 2008-10-27 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fuel cell is an electrochemical device that converts the chemical energy of a reaction (between fuel and oxidant) directly into electricity. Given their efficiency and low emissions, fuel cells provide an important alternative to power produced from fossil fuels. A major challenge in their use is the need for better materials to make fuel cells cost-effective and more durable. This important book reviews developments in materials to fulfil the potential of fuel cells as a major power source. After introductory chapters on the key issues in fuel cell materials research, the book reviews the major types of fuel cell. These include alkaline fuel cells, polymer electrolyte fuel cells, direct methanol fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells and regenerative fuel cells. The book concludes with reviews of novel fuel cell materials, ways of analysing performance and issues affecting recyclability and life cycle assessment. With its distinguished editor and international team of contributors, Materials for fuel cells is a valuable reference for all those researching, manufacturing and using fuel cells in such areas as automotive engineering. Examines the key issues in fuel cell materials research Reviews the major types of fuel cells such as direct methanol and regenerative fuel cells Further chapters explore ways of analysing performance and issues affecting recyclability and life cycle assessment

Book Synthesis and Characterization of Platinum Based Catalysts for Fuel Cells

Download or read book Synthesis and Characterization of Platinum Based Catalysts for Fuel Cells written by Sonam Patel and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Platinum (Pt) and platinum alloys have attracted wide attention as catalysts to attain high performance to increase the power density and reduce the component cost of polymer electrolyte membrane fuel cells (PEMFCs). Extensive research has been conducted in the areas of new alloy development and understanding of mechanisms of electrochemical oxygen reduction reaction (ORR). The durability of PEMFCs is also a major barrier to the commercialization of these fuel cells. Recent studies have suggested that potential cycling can gradually lead to loss of active surface area due to Pt dissolution and nanoparticle grain growth [1]. In this thesis we report a one-step synthesis of highly-dispersed Pt nanoparticles and Pt- Cobalt supported on Ketjen carbon black (20% Pt/C & 20% Pt3Co/C) as electro-catalysts for PEMFCs. Pt particles with size in the range of ~ 2.6nm (Pt/C) and 3.9 nm (Pt3Co/C) were obtained through adsorption on carbon supports and subsequently thermal decomposition of platinum acetylacetonate (Pt(acac)2). A comparative characterization analysis, including X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM), FT-iR, EDAX, cyclic voltammetry (CV), and oxygen reduction reaction (ORR) activity, was performed on the synthesized and commercial (46.5wt% TKK) catalysts. The analysis was to reveal the Pt dispersion on the carbon support, particle size and distribution, electrochemical surface area (ECA), and ORR activities of these catalysts. It was found that the synthesized Pt/C showed similar particle size to that of the TKK catalysts (2.6nm and 2.7nm, respectively), but narrower particle size distribution; while the particle size for Pt3Co/C was found to be ~3.9 nm. Accelerated durability tests (ADT) under potential cycles were also performed for Pt/C and TKK to study the electrochemical degradation of the catalysts in corrosive environments. The ADTs revealed that the two catalysts (Pt/C & TKK) were comparable with respect to degradation in ECA and ORR activities. Initial electrochemical evaluation of Pt3Co/C was conducted, but durability studies were not attempted in this thesis due to its worse ORR kinetics than those of the Pt/C catalyst. From the experimental data, it was found that particle size impacted negatively the ECA and ORR activity of the catalysts.

Book Design  Synthesis  and Characterization of Fuel Cell Electrocatalysts for the Direct Oxidation of Organic Fuels

Download or read book Design Synthesis and Characterization of Fuel Cell Electrocatalysts for the Direct Oxidation of Organic Fuels written by Aurora Marie Cabrera Fojas and published by . This book was released on 2008 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Synthesis of Platinum Rare Earth Alloy Catalysts for Fuel Cells

Download or read book Synthesis of Platinum Rare Earth Alloy Catalysts for Fuel Cells written by Brian Peter Knudsen and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Synthesis and Characterization of Pt TiO2 C Composite Catalysts for Fuel Cells Prepared Using a Glucose Modifier

Download or read book Synthesis and Characterization of Pt TiO2 C Composite Catalysts for Fuel Cells Prepared Using a Glucose Modifier written by Christopher Odetola and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Catalysts in the electrodes of polymer exchange membrane fuel cells (PEMFCs) serve a critical function in reactions which can be used to generate electrical energy from chemical fuels. Pt nanoparticles are commonly dispersed on a conductive support and used as electrode materials in these devices because of their exceptional catalytic activity and electrochemical active surface area. The performance and stability of these electrodes strongly depend on the characteristics of the support. Catalysts supported on high surface area carbon black are widely used in low-temperature fuel cells. In PEMFCs, these catalyst materials can be exposed to high potential and low pH values, resulting in irreversible loss of activity that will limit the useful lifetime of the cell, ultimately leading to its failure. Pt is a noble metal which has good intrinsic stability, but carbon is not thermodynamically stable resulting in the corrosion of the catalyst support under these conditions. The design of more resilient platinum catalyst supports to carry out the successful reaction in a fuel cell's catalyst layer is required to extend the lifetime of PEMFCs degradation. In this thesis, two approaches were used to synthesize robust catalyst support materials for fuel cell applications. In the first case, carbon surfaces were functionalised to enhance their interactions with the catalyst and secondly, stable metal oxide was combined with modified carbon substrates, to maximise contacts within the composite electrocatalysts and to prevent carbon corrosion of a single phase carbon support catalyst. TiO2 NPs, were first chemically bonded to the surfaces of Vulcan carbon to help anchor the Pt catalyst nanoparticles through strong metal-support interactions. Validation of a dual phase catalyst support is an important goal of this research. Each material phase offers a unique advantage that can only be recognized by the preparation of a composite electrocatalyst. Pristine Vulcan (PV) was functionalised with glucose hydroxyl functional groups that react with the base titanium metal alkoxide in a sol-gel reaction and then calcined to form a more chemically crystalline surface. This is followed by impregnation reduction process to deposit the nanostructured Pt catalyst. Material characterization data of synthesized materials were used to correlate the effects of support structure and composition on resilient performance. Advantages from the TiO2/C supports toward performance and durability were contrasted against a set of control samples and demonstrated ex situ. The prepared composite catalysts showed substantial enhancements toward oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) as well as improved stability of the Pt-TiO2 heterogeneous interface formed between catalyst and support. The enhanced performance and durability of these composite catalysts is improved by applying the science of materials and interfaces to the synthesis of composite supports, thus serving as an example for further progress and optimization. Irradiation of these composite catalysts with UV-visible light also showed ~ 171 % photo enhanced activity for MOR, which clearly demonstrates a synergistic effect between the photo- and electrocatalysts. The comparison between the prepared catalysts indicates that there is an appropriate ratio of carbon and TiO2 to obtain the best performance of these photoelectroactive materials. These results demonstrate that methanol oxidation is achieved by electro- and photoelectrocatalysis using a simple and affordable method. This procedure can be conveniently exploited to enhance the response of direct methanol fuel cell electrodes.