EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Synthesis  Characterization  and Rotational Isomerization of Chelate Stabilized Tungsten 6  Alkylidenes  Olefin Metathesis Polymerization Catalyst Precursors

Download or read book Synthesis Characterization and Rotational Isomerization of Chelate Stabilized Tungsten 6 Alkylidenes Olefin Metathesis Polymerization Catalyst Precursors written by Laura L. Blosch and published by . This book was released on 1993 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Synthesis and Reactivity of High Oxidation State Tungsten and Molybdenum Olefin Metathesis Catalysts Bearing New Imido Ligands

Download or read book Synthesis and Reactivity of High Oxidation State Tungsten and Molybdenum Olefin Metathesis Catalysts Bearing New Imido Ligands written by Jonathan Clayton Axtell and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 1 details the synthesis of tungsten imidoalkylidene compounds bearing strongly electron-withdrawing imido ligands. An alternative synthesis involving the treatment of WCl6 with 4 equivalents of N-trimethylsilyl-substituted anilines and subsequent workup with 1,2-dimethoxyethane (DME) has been employed to form complexes of the type W(NAr)2C12(dme); syntheses employing WO2C 2(dme) as the tungsten precursor were unsuccessful. Alkylation with neopentylmagnesium chloride (ClMgNp) and subsequent treatment with trifluoromethanesulfonic acid (HOTf) affords imidoalkylidene species W(NAr)(CHCMe 3)(OTf)2(dme) (OTf = trifluoromethanesulfonate); analogous neophylidene ([W]CHCMe 2Ph) species could not be made under these conditions. Treatment of these compounds with two equivalents of LiO(2,6-(CHCPh 2)C6H3)-Et2O affords the bisaryloxide complexes of the type W(NAr)(CHCMe3)(OR)2. Ring-Opening Metathesis Polymerization (ROMP) studies using a series of these bisaryloxides show that rates of ROMP increase as the electron-withdrawing power of the substituents on the imido ligand increase if steric bulk about the metal center is held constant. A similar trend between two bisaryloxides is observed for anti-to-syn alkylidene rotation rates at 50*C in toluene-d8 . Difficulties synthesizing bis-pyrrolide complexes of the type W(NAr)(CHCMe3)(pyr)2 precluded their use as catalyst precursors; some MAP species containing the more sterically encumbering 2,5-dimethylpyrrolide ligand are presented and the metathesis activity of MAP species bearing the 2,5-dimethylpyrrolide ligand is discussed. Chapter 2 introduces Mo and W complexes bearing the current extreme in sterically bulky imido ligands, the NHIPT (HIPT = 2,6-(2,4,6-iPr 3CH2)CH3) ligand, in an effort to generate all anti alkylidene species. A non-traditional synthetic route is employed in order to install this ligand first as an anilide, and after subsequent proton transfer, as an imido ligand to form a mixed imido species of the type M(NHIPT)(N'Bu)(NH'Bu)Cl. Addition of one equivalent of 2,6-lutidinium chloride, followed by alkylation affords dialkyl species M(NHIPT)(N'Bu)Np 2, and treatment with three equivalents of pyridinium chloride yields all anti imidoalkylidene dichloride species as mono-pyridine adducts, M(NHIPT)(CHCMe 3)C 2(py) (M = Mo, W). General reactivity, including strategies for removal of the pyridine adduct as well as substitution and metathesis chemistry, are discussed. ROMP of MPCP (MPCP = 3-methyl-3-phenylcyclopropene) by a Mo-based MAP species bearing the NHIPT ligand yields predominantly cis,syndiotactic poly(MPCP) and in the homo-metathesis of 1 -octene yields ~81% cis-7-tetradecene. The possible source of trans olefinic product is addressed. Chapter 3 presents the synthesis of the first (1-adamantyl)imido species of tungsten. The functional equivalent of common bisimido precursors for other Mo/W alkylidene species, [W(NAd) 2C 2(AdNH2)1 2, is shown to be a dimer stabilized by hydrogen-bonding interactions between adamantylamine protons and adjacent chlorides bound to the second metal of the dimer. Subsequent alkylation with ClMgNp affords the expected dialkyl species, and treatment with three equivalents of 3,5-lutidinium chloride affords imidoalkylidene complex W(NAd)(CHCMe 3)(C) 2(lut)2 (lut = 3,5-dimethylpyridine). The most desirable synthetic route toward monoalkoxide pyrrolide (MAP) species proceeds through a monoaryloxide monochloride intermediate W(NAd)(CHCMe 3)(Cl)(OAr)(lut) (Ar = 2,6-(2,4,6-Me 3)C6H3, 2,6-(2,4,6-'Pr 3)C6H3). Removal of lutidine with B(C6 F5 )3 and subsequent treatment with lithium pyrrolide affords W(NAd)(CHCMe3)(pyr)(OAr) (pyr = pyrrolide); 2,5-dimethylpyrrolide analogues (W(NAd)(CHCMe3)(Me2pyr)(OAr) can be accessed via protonolysis by HOAr from W(NAd)(CHCMe3)(Me2pyr)2(lut).

Book Novel Strategies for the Synthesis of Tungsten VI  and Molybdenum VI  Imido Oxo Alkylidene NHC Complexes and Their Application in Ring Opening Metathesis Polymerization

Download or read book Novel Strategies for the Synthesis of Tungsten VI and Molybdenum VI Imido Oxo Alkylidene NHC Complexes and Their Application in Ring Opening Metathesis Polymerization written by Janis Musso and published by Cuvillier. This book was released on 2022-05-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, the synthesis of neutral and cationic group(VI) imido/oxo alkylidene N-heterocyclic carbene (NHC) complexes that tolerate protic functional groups and aldehydes was reported. Unprecedented turnover numbers of up to 1.2 million were found for their silica-supported representatives. Some group(VI) alkylidene NHC complexes even display stability towards moisture and air. Coordination of the NHC to tungsten imido bistriflate precursor complexes, however, can lead to undesired side reactions. This work consequently aimed at the development of novel, more efficient routes to neutral and cationic tungsten imido/oxo alkylidene NHC complexes. In addition, some molybdenum imido alkylidene NHC complexes were targeted. Thereby, the scope of synthetically accessible complexes was broadened and, subsequently, their reactivity in ring-opening metathesis polymerization (ROMP) was probed. Those complexes were used as thermally latent initiators for the ROMP of dicyclopentadiene. Precise determination of the onset temperature of polymerization was achieved via monitoring with differential scanning calorimetry. Furthermore, the selectivity of novel complexes was tested for the formation of stereoregular polymers through ROMP of enantiomerically pure norbornene derivatives, which allowed for the synthesis of up to 98% trans-isotactic or cis-syndiotactic polymers depending on the steric demand of the imido and the alkoxide ligand.

Book Synthesis and Characterization of III V Semiconductor Precursors and Homogeneous Catalysts for Olefin Polymerization

Download or read book Synthesis and Characterization of III V Semiconductor Precursors and Homogeneous Catalysts for Olefin Polymerization written by Woo-Kyu Kim and published by . This book was released on 1998 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Comprehensive Coordination Chemistry II

Download or read book Comprehensive Coordination Chemistry II written by J. A. McCleverty and published by Newnes. This book was released on 2003-12-03 with total page 11845 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Coordination Chemistry II (CCC II) is the sequel to what has become a classic in the field, Comprehensive Coordination Chemistry, published in 1987. CCC II builds on the first and surveys new developments authoritatively in over 200 newly comissioned chapters, with an emphasis on current trends in biology, materials science and other areas of contemporary scientific interest.

Book Handbook of Metathesis  3 Volume Set

Download or read book Handbook of Metathesis 3 Volume Set written by Robert H. Grubbs and published by John Wiley & Sons. This book was released on 2015-05-26 with total page 1639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering the complete breadth of the olefin metathesis reaction. The second edition of the ultimate reference in this field is completely updated and features more than 80% new content, with the focus on new developments in the field, especially in industrial applications. No other book covers the topic in such a comprehensive manner and in such high quality, and this new edition retains the three-volume format: Catalyst Development, Applications in Organic Synthesis and Polymer Synthesis. Edited by a Nobel laureate in the field, and with a list of contributors that reads like a "Who's-Who" of metathesis, this is an indispensable one-stop reference for organic, polymer and industrial chemists, as well as chemists working with organometallics. Individual volumes also available separately to purchase Volume 1: Catalyst Development - http://www.wiley.com/WileyCDA/WileyTitle/productCd-3527339485.html Volume 2: Applications in Organic Synthesis - http://www.wiley.com/WileyCDA/WileyTitle/productCd-3527339493.html Volume 3: Polymer Synthesis - http://www.wiley.com/WileyCDA/WileyTitle/productCd-3527339507.html

Book Flugblatt an die Mitglieder des dritten Kongresses der volkswirthschaftlichen Gessellschaft f  r Ost  u  Westpreussen betreffend die volkswirthschaftlichen Aufgaben des Abgeordneten Hauses

Download or read book Flugblatt an die Mitglieder des dritten Kongresses der volkswirthschaftlichen Gessellschaft f r Ost u Westpreussen betreffend die volkswirthschaftlichen Aufgaben des Abgeordneten Hauses written by and published by . This book was released on 1861 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Artificial Metalloenzymes and MetalloDNAzymes in Catalysis

Download or read book Artificial Metalloenzymes and MetalloDNAzymes in Catalysis written by Montserrat Diéguez and published by John Wiley & Sons. This book was released on 2018-02-21 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: An important reference for researchers in the field of metal-enzyme hybrid catalysis Artificial Metalloenzymes and MetalloDNAzymes in Catalysis offers a comprehensive review of the most current strategies, developed over recent decades, for the design, synthesis, and optimization of these hybrid catalysts as well as material about their application. The contributors—noted experts in the field—present information on the preparation, characterization, and optimization of artificial metalloenzymes in a timely and authoritative manner. The authors present a thorough examination of this interesting new platform for catalysis that combines the excellent selective recognition/binding properties of enzymes with transition metal catalysts. The text includes information on the various applications of metal-enzyme hybrid catalysts for novel reactions, offers insights into the latest advances in the field, and contains an informative perspective on the future: Explores the development of artificial metalloenzymes, the modern and strongly evolving research field on the verge of industrial application Contains a comprehensive reference to the research area of metal-enzyme hybrid catalysis that has experienced tremendous growth in recent years Includes contributions from leading researchers in the field Shows how this new catalysis combines the selective recognition/binding properties of enzymes with transition metal catalysts Written for catalytic chemists, bioinorganic chemists, biochemists, and organic chemists, Artificial Metalloenzymes and MetalloDNAzymes in Catalysis offers a unique reference to the fundamentals, concepts, applications, and the most recent developments for more efficient and sustainable synthesis.

Book Investigations of Sterically Demanding Ligands in Molybdenum and Tungsten Monopyrrolide Monoalkoxide Catalysts for Olefin Metathesis

Download or read book Investigations of Sterically Demanding Ligands in Molybdenum and Tungsten Monopyrrolide Monoalkoxide Catalysts for Olefin Metathesis written by Laura Claire Heidkamp Gerber and published by . This book was released on 2013 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 2 investigates the mechanism of the temperature-controlled polymerization of 3- methyl-3-phenylcyclopropene (MPCP) by Mo(NAr)(CHCMe 2Ph)(Pyr)(OTPP) (Ar = 2,6- diisopropylphenyl, Pyr = pyrrolide, OTPP = 2,3,5,6-tetraphenylphenoxide). Cissyndiotactic poly(MPCP) is obtained at -78 °C, while atactic poly(MPCP) is obtained at ambient temperature. The syn initiator (syn refers to the isomer in which the substituent on the alkylidene points towards the imido ligand and anti where the substituent points away) reacts with MPCP to form an anti first-insertion product at low temperatures, which continues to propagate to give cis,syndiotactic polymer. At higher temperatures, the anti alkylidenes that form initially upon reaction with MPCP rotate thermally to syn alkylidenes on a similar timescale as polymer propagation, giving rise to an irregular polymer structure. In this system cis,syndiotactic polymer is obtained through propagation of anti alkylidene species. Chapters 3 - 5 detail the synthesis and reactivity of compounds containing a 2,6- dimesitylphenylimido (NAr*) ligand in order to provide a better understanding of the role of steric hindrance in olefin metathesis catalysts. A new synthetic route to imido alkylidene complexes of Mo and W, which proceeds through mixed-imido compounds containing both NAr* and NtBu ligands, was developed to incorporate the NAr* ligand. Alkylidene formation is accomplished by the addition of 3 equivalents of pyridine*HCl to Mo(NAr*)(NBu)(CH 2CMe2Ph)2 or the addition of 1 equivalent of pyridine followed by 3 equivalents of HCl solution to W(NAr*)(N'Bu)(CH 2CMe2Ph)2 to provide M(NAr*)(CHCMe 2Ph)Cl 2(py) (py = pyridine). Monoalkoxide monochloride, bispyrrolide, and monoalkoxide monopyrrolide (MAP) compounds are isolated upon substitution of the chloride ligands. Reaction of W MAP complexes (W(NAr*)(CHCMe 2Ph)(Me2Pyr)(OR)) with ethylene allows for the isolation of unsubstituted metallacycle complexes W(N Ar*)(C 3H6)(Me 2Pyr)(OR) (R = CMe(CF 3)2, 2,6-Me2C6H3, and SiPh 3). By application of vacuum to solutions of unsubstituted metallacyclebutane species, methylidene complexes W(NAr*)(CH 2)(Me2Pyr)(OR) (R = tBu, 2,6-Me2C6H3, and SiPh 3) are isolated. Addition of one equivalent of 2,3- dicarbomethoxynorbornadiene to methylidene species allows for the observation of firstinsertion products by NMR spectroscopy. Investigations of NAr* MAP compounds as catalysts for olefin metathesis reactions show that they are active catalysts, but not E or Z selective for ring-opening metathesis polymerization the homocoupling of 1-octene or 1,3-dienes. Methylidene species W(NAr*)(CH 2)(Me2Pyr)(OR) (R = 2,6-Me 2C6H3 or SiPh3) catalyze the ring-opening metathesis or substituted norbornenes and norbornadienes with ethylene.

Book Synthesis and Characterization of Metal Metal Multiply Bonded Complexes and Catalytic Applications of Solvent Stabilized Transition Metal Complexes for Polymerization of Olefins

Download or read book Synthesis and Characterization of Metal Metal Multiply Bonded Complexes and Catalytic Applications of Solvent Stabilized Transition Metal Complexes for Polymerization of Olefins written by Guofang Zhang and published by . This book was released on 2001 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molybdenum and Tungsen Alkylidene Species for Catalytic Enantio   Z   and E selective Olefin Metathesis Reactions

Download or read book Molybdenum and Tungsen Alkylidene Species for Catalytic Enantio Z and E selective Olefin Metathesis Reactions written by Smaranda Constanţa Marinescu and published by . This book was released on 2011 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: CHAPTER1 A general introduction to olefin metathesis is given. Highlights include a detailed discussion of group VI imido alkylidene catalysts. CHAPTER 2 Several bispyrrolide species Mo(NAr)(CHCMe 2Ph)(pyr)2 (Ar = 2,6-i-Pr2C6H3, pyr = 2,3,4,5- tetramethylpyrrolide, 2,5-diisopropylpyrrolide, or 2,5-diphenylpyrrolide) have been synthesized and characterized. X-ray structural studies of these species display one r 1-pyrrolide ring and one 5-p1y rrolide ring. Monohexafluoro-t-butoxide pyrrolide (MAP) species can be prepared, either through addition of one equiv of Me(CF 3)2COH to a bispyrrolide or through reactions between the lithium pyrrolide and the bishexafluoro-t-butoxide. Trimethylphosphine adducts of MAP hexafluoro-t-butoxide species, Mo(NAr)(CHCMe 2Ph)(pyr)[OC(CF 3)2Me](PMe3), have been prepared. An X-ray structural study of one of these phosphine adducts was found to have PMe3 bound approximately trans to the pyrrolide. This adduct serves as a model for the structure of the initial olefin adduct in olefin metathesis. CHAPTER 3 The two diastereomers of Mo(NAr)(CHCMe2Ph)(2,5-dimethylpyrrolide)(OBitet) ((SMRJ)-1 and (RMR])-1, respectively, where OBitet is an enantiomerically pure (R) phenoxide and Ar = 2,6- diisopropylphenyl), form adducts with PMe3. One of these ((RmR)-1(PMe3)) has been isolated. An X-ray structure reveals that PMe3 has added trans to the pyrrolide; it is a model for where an olefin would attack the metal. Trimethylphosphine will catalyze slow interconversion of (SMRI)- 1 and (RMRJ)-1 via formation of weak PMe3 adducts, which undergo a series of Berry pseudorotations or (equivalent) turnstile rearrangements. The interconversion of diastereomers in the presence of trimethylphosphine was investigated by a variety of kinetic studies, variable temperature NMR spectroscopic studies, and labeling studies. CHAPTER 4 Addition of ethylene to Mo(NAr)(CHCMe 2Ph)(OBitet)(2,5-Me2Pyr) led to the trigonal bipyramidal metallacyclobutane complex, Mo(NAr)(C 3H6)(OBitet)(2,5-Me 2Pyr), in which the imido and aryloxide ligands occupy axial positions. NMR studies of Mo(NAr)(C 3H6)(OBitet)(2,5-Me 2Pyr) showed that the metallacyclobutane - species is in equilibrium with ethylene/methylidene intermediates before losing ethylene to yield the respective methylidene complexes. Detailed NMR studies of Mo(NAr)(C3H6)(OBitet)(Me 2Pyr) were carried out and compared with previous studies of W(NAr)(C 3H6)(OBitet)(Me 2Pyr). .It could be shown that Mo(NAr)(C 3H6)(OBitet)(Me 2Pyr) forms an ethylene/methylidene intermediate at 20 0C at a rate that is 4500 times faster than the rate at which W(NAr)(C 3H6)(OBitet)(Me 2Pyr) forms an ethylene/methylidene intermediate. It is proposed that the stability of methylidene complexes coupled with their high reactivity account for the high efficiency of many olefin metathesis processes that employ MonoAryloxidePyrrolide (MAP) catalysts. CHAPTER 5 MonoAryloxide-Pyrrolide (MAP) olefin metathesis catalysts of molybdenum that contain a chiral bitetralin-based aryloxide ligand are efficient for ethenolysis of methyl oleate, cyclooctene, and cyclopentene. Ethenolysis of 5000 equivalents of methyl oleate produced 1- decene (1D) and methyl-9-decenoate (M9D) with a selectivity of >99%, yields up to 95%, and a TON (turnover number) of 4750 in 15 hours. Tungstacyclobutane catalysts gave yields approximately half those of molybdenum catalysts, either at room temperature or at 50 0C, although selectivity was still >99%. Ethenolysis of 30000 equiv of cyclooctene to 1,9-decadiene could be carried out with a TON of 22500 at 20 atm (75% yield), while ethenolysis of 10000 equiv of cyclopentene to 1,6-heptadiene could be carried out with a TON of 5800 at 20 atm (58% yield). Some MonoAryloxide-Pyrrolide (MAP) olefin metathesis catalysts of molybdenum that are Z selective for the homocoupling of terminal olefins can be employed for the selective ethenolysis of Z internal olefins in the presence of E internal olefins in minutes at 22 0C. Therefore it is possible to take an E:Z mixture to a pure E product by selectively destroying the Z component and removing the resulting low molecular weight ethenolysis products. Exclusively E olefins can be obtained from terminal olefins in a two step process: the first step consists of a nonselective homocoupling to give approximately a 4:1 E:Z; while the second step consists of Zselective ethenolysis of the olefinic mixture to generate pure E-olefin. Several functional groups can be tolerated, such as ethers and esters. CHAPTER 6 3,5-Dimethylphenylimido complexes of tungsten can be prepared using procedures analogous to those employed for other tungsten catalysts, as can bispyrrolide species, and MonoAryloxide- Pyrrolide (MAP) species. X-ray structural studies of metallacylcobutane MAP species show them to have the expected TBP geometry with the imido and aryloxide ligands in apical positions. Homocoupling of 1-hexene, 1-octene, and methyl-10-undecenoate are achieved in 45- 89% yield and a Z-selectivity of >99% with W(NAr")(C 3H6)(pyr)(OHIPT) (Ar" = 3,5-Me 2C6H3; HIPT = 2,6-(2,4,6-(i-Pr) 3C6H2)2C6H3) as a catalyst. Homocoupling of terminal olefins in the presence of E olefins elsewhere in the molecule was achieved with excellent selectivity. CHAPTER 7 A monotriflate species, Mo(NAd)(CHCMe 2Ph)(OHIPT)(OTt) (Ad = 1-Adamantyl), is obtained by salt metathesis of bistriflate species and one equivalent of lithium alkoxide. Addition of PMe3 to the monotriflate species led to the formation of a phosphine adduct. An X-ray structural study revealed a square pyramidal coordination environment, with the alkylidene in the apical position and the phophine trans to the triflate ligand. The triflate can be exchanged with a variety of anionic ligands, such as 2-Mespyrrolide and t-butoxide. These species have been characterized by X-ray crystallography and they reveal the expected tetrahedral geometry. CHAPTER 8 Exposure of diethylether solution of Mo(NAr)(CHCMe 2Ph)(Me2Pyr)(OSiPh3) (1) to one atmosphere of ethylene for one hour led to the formation of the ethylene complex Mo(NAr)(CH 2CH 2)(Me 2Pyr)(OSiPh 3) (2). Addition of one equivalent of triphenylsilanol to a solution of 2 gives Mo(NAr)(CH 2CH2)(OSiPh 3)2 (3) readily. Mo(NAr)(CHCMe 2Ph)(OTf)2(dme) reacts slowly with ethylene (60 psi) in toluene at 80 'C to give cis and trans isomers of Mo(NAr)(CH 2CH 2)(OTf)2(dme) (4a) in the ratio of -2(cis):1. Addition of lithium 2,5- dimethylpyrrolide to 4a under 1 atm of ethylene produces Mo(NAr)(CH 2CH 2)(h-Me2Pyr)(h 5- Me2Pyr) (5). Neat styrene reacts with 2 and 3 to generate the styrene complexes, Mo(NAr)(CH 2CHPh)(Me2Pyr)(OSiPh 3) (6) and Mo(NAr)(CH 2CHPh)(OSiPh3)2 (7), respectively. Similarly, the trans-3-hexene complex, Mo(NAr)(trans-3-hexene)(OSiPh 3)2 (8a), can be prepared from 3 and neat trans-3-hexene. When 3 is exposed to 1 atm of ethylene, the molybdacyclopentane species, Mo(NAr)(C 4Hs)(OSiPh3)2 (9), is generated. X-ray structural studies were carried out on 2, 5, 7, 8a, and 9. All evidence suggests that alkene exchange at the Mo(IV) center is facile, followed by cis,trans isomerization and isomerization via double bond migration. In addition, trace amounts of alkylidene complexes are formed that result in slow metathesis reactions of free olefins to give (e.g.) a distribution of all possible linear olefins from an initial olefin and its double bond isomers. APPENDIX A Monopyrrolide monothiolate species of type Mo(NAr)(CHR)(2,5-Me 2NC4H2)(SR') (Ar = 2,6-i- Pr2C6H3; R = CMe3, CMe2Ph; R'= 2,6-Me 2C6H3, C6F5) have been synthesized by protonolysis of Mo(NAr)(CHR)(2,5-Me 2NC4H2)2 with one equivalent of R'SH. Addition of one equiv of 2,6- Me2C6H3SH to Mo(NAr)(CHCMe 2Ph)[OC(CF3)2Me] 2 led to the formation of Mo(NAr)(CHCMe 2Ph)(2,6-Me2C6H3S)[OCMe(CF 3)2] (3) in good yield. Using the same method, Mo(NAr)(CHCMe 3)(SCMe 3)[OC(CF 3)2Me] (4) was synthesized. A ligand scrambling effect was observed by 1H NMR spectroscopy leading to the formation of bisalkoxide and bisthiolate species. The bisalkoxide species, Mo(NAr)(CHCMe 2Ph)(OBitet) 2, was synthesized by salt metathesis of Mo(NAr)(CHCMe 2Ph)(OTf) 2(dme) and two equivalents of BitetONa. An X-ray structural study of this compound shows an anti configuration of the alkylidene.

Book Synthesis and Characterization of Group 4 Complexes and Olefin Polymerization Catalysts Supported by Chelating V aryl Ligands

Download or read book Synthesis and Characterization of Group 4 Complexes and Olefin Polymerization Catalysts Supported by Chelating V aryl Ligands written by Chun Yu Lo and published by . This book was released on 2009 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Isomerization in Olefin Metathesis

Download or read book Isomerization in Olefin Metathesis written by Carolyn Sarah Higman and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The past two years have witnessed groundbreaking advances in the industrial deployment of olefin metathesis. While metathesis methodologies have been an integral part of the chemical manufacturing landscape for 60 years, implementation in pharmaceutical and specialty chemicals manufacturing represents a new frontier. The imperative to develop greener and more cost-effective manufacturing processes is anticipated to spur further improvements in sustainable synthesis. Advances in catalyst productivity, however, are critical to expansion of the uptake of metathesis methodologies in this and other manufacturing sectors. Key to increased catalyst productivity is elimination of side reactions that lower yield and errode selectivity. Among such reactions, double-bond isomerization is by far most common. Accumulating evidence suggests that unwanted isomerization during olefin metathesis is due to ruthenium species generated via catalyst decomposition. The identification of these species and how they are formed is thus of great importance. Two hydride complexes, RuHCl(CO)(H2IMes)(PCy3) and a dinuclear hydride, are known to form under some circumstances by decomposition of the second-generation Grubbs catalyst, RuCl2(H2IMes)(PCy3)(=CHPh), GII. These complexes have been widely viewed as responsible for unintended isomerization reactions. However, examination of their performance in olefin isomerization under conditions relevant to metathesis reveals that their activity is too feeble to account for the levels of isomerization observed during metathesis. Alternatively, kinetically competent culprits emerge from decomposition studies that reveal unexpected ruthenium products on decomposition of GII during metathesis; specifically, formation of ruthenium nanoparticles. The formation and catalytic non-innocence of RuNPs constitutes a new paradigm in this field, which opens the door to new approaches to prevent or to harness olefin isomerization. Key to prevention, clearly, is circumventing the decomposition pathways that enable ligand stripping from the active catalyst. New approaches to catalyst design that involve use of truncated NHC ligands are also examined. Finally, the power and utility of isomerization when coupled with metathesis is explored. The opportunities and limitations of orthogonal isomerization-metathesis catalysis are examined in the context of the two-step synthesis of cinnamates from 1-allylbenzenes abundant in essential oils. An efficient one-pot, two-catalyst protocol is developed for conversion of these biorenewable feedstocks to high-value-added chemicals.

Book The Organometallic Chemistry of the Transition Metals

Download or read book The Organometallic Chemistry of the Transition Metals written by Robert H. Crabtree and published by John Wiley & Sons. This book was released on 2005-06-14 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fully updated and expanded to reflect recent advances, this Fourth Edition of the classic text provides students and professional chemists with an excellent introduction to the principles and general properties of organometallic compounds, as well as including practical information on reaction mechanisms and detailed descriptions of contemporary applications.

Book Surface Organometallic Chemistry  Molecular Approaches to Surface Catalysis

Download or read book Surface Organometallic Chemistry Molecular Approaches to Surface Catalysis written by Jean-Marie Basset and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surface organometallic chemistry is a new field bringing together researchers from organometallic, inorganic, and surface chemistry and catalysis. Topics ranging from reaction mechanisms to catalyst preparation are considered from a molecular basis, according to which the "active site" on a catalyst surface has a supra-molecular character. This. the first book on the subject, is the outcome of a NATO Workshop held in Le Rouret. France, in May. 1986. It is our hope that the following chapters and the concluding summary of recommendations for research may help to provide a definition of surface organometallic chemistry. Besides catalysis. the central theme of the Workshop, four main topics are considered: 1) Reactions of organometallics with surfaces of metal oxides, metals. and zeolites; 2) Molecular models of surfaces, metal oxides, and metals; 3) Molecular approaches to the mechanisms of surface reactions; 4) Synthesis and modification of zeolites and related microporous solids. Most surface organometallic chemistry has been carried out on amorphous high-surf ace-area metal oxides such as silica. alumina. magnesia, and titania. The first chapter. contributed by KNOZINGER. gives a short summary of the structure and reactivity of metal oxide surfaces. Most of our understanding of these surfaces is based on acid base and redox chemistry; this chemistry has developed from X-ray and spectroscopic data, and much has been inferred from the structures and reactivities of adsorbed organic probe molecules. There are major opportunities for extending this understanding by use of well-defined (single crystal) oxide surfaces and organometallic probe molecules.

Book Carbene Chemistry

    Book Details:
  • Author : Guy Bertrand
  • Publisher : CRC Press
  • Release : 2002-05-14
  • ISBN : 0824743210
  • Pages : 278 pages

Download or read book Carbene Chemistry written by Guy Bertrand and published by CRC Press. This book was released on 2002-05-14 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Highlights recent discoveries in the development of rapid kinetic techniques that allow for direct visualization and state-of-the-art computational methods.