EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Synthesis  Characterization and Applications of Metal Nanoparticles Supported on Porous Carbon

Download or read book Synthesis Characterization and Applications of Metal Nanoparticles Supported on Porous Carbon written by Charitha Jayaruk Thambiliyagodage and published by . This book was released on 2017 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Porous carbon incorporating metal nanoparticles has been synthesized by nanocasting. The main two methods of synthesis were used: the formation of nanoparticles during the carbonization of carbon, and the formation of nanoparticles by metal precursor infiltration and reduction on porous carbon. The catalytic activity of nickel nanoparticles incorporated onto hierarchically porous carbon monoliths for the reduction of p-nitrophenol was studied. p-Quinoimine was identified as the stable intermediate. Catalytic graphitization of monolithic hierarchically porous carbon by iron, cobalt and nickel nanoparticles was investigated. The catalytic graphitization of amorphous carbon increased with increasing pyrolysis temperature. Iron was capable of graphitizing carbon more effectively than cobalt and nickel, with cobalt being higher in activity than nickel. Oxygen and nitrogen rich mesoporous carbon were used to support gold nanoparticles and their catalytic activity was investigated for oxidation of benzyl alcohol in water. The catalysts showed significant catalytic activity, but loss of activity were found, resulting in decreasing conversion of benzyl alcohol on subsequent cycles.

Book Nanoparticle Design and Characterization for Catalytic Applications in Sustainable Chemistry

Download or read book Nanoparticle Design and Characterization for Catalytic Applications in Sustainable Chemistry written by Rafael Luque and published by Royal Society of Chemistry. This book was released on 2019-05-10 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoparticles exhibit a range of different properties when compared to bulk materials. Their high surface-area to volume ratio makes them particularly attractive for use as catalysts and recent years have seen an explosion of research in this area. The ability to fine-tune the size and structure of nanoparticles means that it is possible to design catalytic materials for improved activity or specificity. As catalysis is one of the key technologies for more sustainable production of both chemicals and energy, the past few years have seen increasing numbers of nanomaterials reported for these applications. Depending on the application, a number of different catalyst synthesis and optimization protocols can be used. This book provides comprehensive links between the design and fabrication method for nanoparticles and their catalytic performance (activity, selectivity and stability) in various applications. Presenting an introduction to the concept of catalyst design and recent developments in the preparation and characterisation of nanomaterials, followed by several chapters on the design of catalysts for specific applications, this book is a valuable resource for researchers working on catalytic reactions, industrial processes and nanomaterial applications.

Book Metal Nanoparticles

    Book Details:
  • Author : Daniel L. Fedlheim
  • Publisher : CRC Press
  • Release : 2001-10-26
  • ISBN : 9780585404394
  • Pages : 348 pages

Download or read book Metal Nanoparticles written by Daniel L. Fedlheim and published by CRC Press. This book was released on 2001-10-26 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: A state-of-the-art reference, Metal Nanoparticles offers the latest research on the synthesis, characterization, and applications of nanoparticles. Following an introduction of structural, optical, electronic, and electrochemical properties of nanoparticles, the book elaborates on nanoclusters, hyper-Raleigh scattering, nanoarrays, and several applications including single electron devices, chemical sensors, biomolecule sensors, and DNA detection. The text emphasizes how size, shape, and surface chemistry affect particle performance throughout. Topics include synthesis and formation of nanoclusters, nanosphere lithography, modeling of nanoparticle optical properties, and biomolecule sensors.

Book Nanostructured Multifunctional Materials

Download or read book Nanostructured Multifunctional Materials written by Esteban A. Franceschini and published by CRC Press. This book was released on 2021-06-04 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of nanomaterials plays a fundamental role in current and future technology applications, particularly nanomaterials that have multiple functionalities. This book provides a broad overview of the effect of nanostructuring in the multifunctionality of different widely studied nanomaterials. This book is divided into four sections constituting a road map that groups materials sharing certain types of nanostructuring, including nanoporous, nanoparticled, 2D laminar nanomaterials, and computational methods for characterizations of nanostructures. This structured approach in nanomaterials research will serve as a valuable reference material for chemists, (bio)engineers, physicists, nanotechnologists, undergraduates, and professors.

Book Nanoparticles in Catalysis

Download or read book Nanoparticles in Catalysis written by Karine Philippot and published by John Wiley & Sons. This book was released on 2021-04-29 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoparticles in Catalysis Discover an essential overview of recent advances and trends in nanoparticle catalysis Catalysis in the presence of metal nanoparticles is an important and rapidly developing research field at the frontier of homogeneous and heterogeneous catalysis. In Nanoparticles in Catalysis, accomplished chemists and authors Karine Philippot and Alain Roucoux deliver a comprehensive guide to the key aspects of nanoparticle catalysis, ranging from synthesis, activation methodology, characterization, and theoretical modeling, to application in important catalytic reactions, like hydrogen production and biomass conversion. The book offers readers a review of modern and efficient tools for the synthesis of nanoparticles in solution or onto supports. It emphasizes the application of metal nanoparticles in important catalytic reactions and includes chapters on activation methodology and supported nanoclusters. Written by an international team of leading voices in the field, Nanoparticles in Catalysis is an indispensable resource for researchers and professionals in academia and industry alike. Readers will also benefit from the inclusion of: A thorough introduction to New Trends in the Design of Metal Nanoparticles and Derived Nanomaterials for Catalysis An exploration of Dynamic Catalysis and the Interface Between Molecular and Heterogeneous Catalysts A practical discussion of Metal Nanoparticles in Water: A Relevant Toolbox for Green Catalysis Organometallic Metal Nanoparticles for Catalysis A concise treatment of the opportunities and challenges of CO2 Hydrogenation to Oxygenated Chemicals Over Supported Nanoparticle Catalysts Perfect for catalytic, organic, inorganic, and physical chemists, Nanoparticles in Catalysis will also earn a place in the libraries of chemists working with organometallics and materials scientists seeking a one-stop resource with expert knowledge on the synthesis and characterization of nanoparticle catalysis.

Book Synthesis of Supported Metal Nanoparticles on High Surface Area Supports for Application in Energy Conversion and Heterogeneous Catalysis

Download or read book Synthesis of Supported Metal Nanoparticles on High Surface Area Supports for Application in Energy Conversion and Heterogeneous Catalysis written by Nazgol Norouzi and published by . This book was released on 2020 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Precise control of metal nanoparticles' size, composition, and dispersity over high surface area supports are highly desirable to address current challenges in energy storage and conversion as well as catalytic processes involving precious metals. Therefore, developing viable synthetic routes that enable new catalytic systems derived from inexpensive transition metals or limited use of precious metals is vital for clean energy applications such as fuel cells and rechargeable batteries or affordable drugs in the pharmaceuticals arena. In addition to metal components of heterogeneous catalysts, the catalyst support is an integral part of catalyst design as it can impart both physical stability and catalytic enhancement through strong metal-support interactions. In particular, recent studies have shown that the incorporation of heteroatoms like nitrogen and phosphorus in high surface area carbon supports is an effective approach for tailoring the textural and electronic properties of carbon supports. Here we introduce different supported metal nanoparticles on high surface area supports, with their characteristic tuned toward different applications. In the first project, we developed an iron phosphide doped porous carbon system (PFeC) and used it as a cathode catalyst for oxygen reduction reaction (ORR) in fuel cells. The conversion of chemical energy to electrical energy is a sustainable approach for energy production achieved by fuel cells. Currently, the noble metal platinum, in the form of 20 wt% Pd deposited on carbon support (Pt/C) is the commercially available catalyst for the ORR. Sluggish ORR mechanism and lack of long-term stability demand for a more sustainable, inexpensive, and kinetically efficient replacement catalyst. Here iron phosphide nanoparticles (NPs) incorporated in a phosphorus-doped porous carbon, with a high specific area (SABET = 967 m2 g−1) was synthesized using inexpensive reactants, triphenylphosphine and iron chloride by a facile carbonization/chemical activation method via zinc chloride. PFeC selectively reduces O2 via an efficient reaction pathway and exhibits superior long-term stability than Pt/C. The superior electrocatalytic performance is credited to the synergistic effects between the P and Fe which, form well-defined and well-distributed nanoparticles confined in highly porous carbon nanosheets. In the second project, supported palladium-based ultra-small bimetallic NPs deposited on mesoporous fumed silica support (SABET = 350 m2 g−1) were synthesized and used as a catalyst for Suzuki -Miyaura cross-coupling (SCC) reactions. Bimetallic NPs consisting of active metal Pd and base metals (Cu, Ni, and Co) were deposited on the silica support through strong electrostatic (SEA) synthesis method yielding homogeneously alloyed nanoparticles with an average size of 1.3 nm. All bimetallic catalysts were found to be highly active toward SCC surpassing the activity of monometallic Pd/SiO2. In particular, the catalyst consisting of Cu and Pd (CuPd/SiO2), performed the SCC with a remarkable turn over frequency of 248000. The combination of Pd with base metals helps in retaining the Pd0 status by charge donation from base metals to Pd and thus facilitating the SCC, in specific lowering the activation energy of the aryl halide oxidative addition rate-limiting step. In the third and last project, functionalized supports are widely utilized in energy conversion and energy storage applications. High surface area porous carbon materials have been introduced as a highly active cathode material for Lithium-sulfur batteries (LSB). The electrochemical performance of the LSB can be largely improved by the efficient reversible conversion of lithium polysulfides to Li2S during discharge and to elemental sulfur during charge. Nickel NPs deposited on high surface area nitrogen-doped carbon support (Ni/BIDC-900, SABET = 3560 m2 g−1) act as active centers for the adsorption of polysulfides during the discharge process and rapidly convert them to Li2S while catalyzing Li2S oxidation to sulfur in the reverse process. The addition of Ni NPs improves the reaction kinetics and activity retention of the LSB.

Book Advanced Nanomaterials for Catalysis and Energy

Download or read book Advanced Nanomaterials for Catalysis and Energy written by Vladislav A. Sadykov and published by Elsevier. This book was released on 2018-08-27 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications outlines new approaches to the synthesis of nanomaterials (synthesis in flow conditions, laser electrodispersion of single metals or alloys on carbon or oxide supports, mechanochemistry, sol-gel routes, etc.) to provide systems with a narrow particle size distribution, controlled metal-support interaction and nanocomposites with uniform spatial distribution of domains of different phases, even in dense sintered materials. Methods for characterization of real structure and surface properties of nanomaterials are discussed, including synchrotron radiation diffraction and X-ray photoelectron spectroscopy studies, neutronography, transmission/scanning electron microscopy with elemental analysis, and more. The book covers the effect of nanosystems' composition, bulk and surface properties, metal-support interaction, particle size and morphology, deposition density, etc. on their functional properties (transport features, catalytic activity and reaction mechanism). Finally, it includes examples of various developed nanostructured solid electrolytes and mixed ionic-electronic conductors as materials in solid oxide fuel cells and asymmetric supported membranes for oxygen and hydrogen separation. Outlines synthetic and characterization methods for nanocatalysts Relates nanocatalysts' properties to their specific applications Proposes optimization methods aiming at specific applications

Book Biopolymer Based Metal Nanoparticle Chemistry for Sustainable Applications

Download or read book Biopolymer Based Metal Nanoparticle Chemistry for Sustainable Applications written by Mahmoud Nasrollahzadeh and published by Elsevier. This book was released on 2021-03-05 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biopolymers are becoming an increasingly important area of research as traditional chemical feedstocks run low and concerns about environmental impacts increase. One area of particular interest is their use for more sustainable development of metal nanoparticles. Biopolymer-based Metal Nanoparticle Chemistry for Sustainability Applications, Volume 1 reviews key polymers found in nature, their characterization and modification, and processes for using them in the development of metal nanoparticles. Beginning with an introduction to both green chemistry and biopolymers in Part 1, the book goes on to outline the classification of biopolymers in Part 2, with specific details on polysaccharides, proteins and polypeptides, lignin, and polylactic acid. Properties of biopolymers, including biodegradability and toxicity, are the focus of Part 3, before Part 4 goes on to discuss synthesis and characterization. Reviews novel sources of polymers with high potential as green media for synthesizing nanostructures Provides technological details on the synthesis of natural polymer-based metal nanoparticles Highlights the use of natural polymer supports and the impact of their properties on stability, morphology and scale of nanostructures

Book Metal Nanoparticles for Catalysis

Download or read book Metal Nanoparticles for Catalysis written by Franklin Tao and published by Royal Society of Chemistry. This book was released on 2014-06-12 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Catalysis is a central topic in chemical transformation and energy conversion. Thanks to the spectacular achievements of colloidal chemistry and the synthesis of nanomaterials over the last two decades, there have also been significant advances in nanoparticle catalysis. Catalysis on different metal nanostructures with well-defined structures and composition has been extensively studied. Metal nanocrystals synthesized with colloidal chemistry exhibit different catalytic performances in contrast to metal nanoparticles prepared with impregnation or deposition precipitation. Additionally, theoretical approaches in predicting catalysis performance and understanding catalytic mechanism on these metal nanocatalysts have made significant progress. Metal Nanoparticles for Catalysis is a comprehensive text on catalysis on Nanoparticles, looking at both their synthesis and applications. Chapter topics include nanoreactor catalysis; Pd nanoparticles in C-C coupling reactions; metal salt-based gold nanocatalysts; theoretical insights into metal nanocatalysts; and nanoparticle mediated clock reaction. This book bridges the gap between nanomaterials synthesis and characterization, and catalysis. As such, this text will be a valuable resource for postgraduate students and researchers in these exciting fields.

Book Nanomaterials

Download or read book Nanomaterials written by A. K. Haghi and published by CRC Press. This book was released on 2013-03-11 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended as a reference for basic and practical knowledge about the synthesis, characterization, and applications of nanotechnology for students, engineers, and researchers, this book focuses on the production of different types of nanomaterials and their applications, particularly synthesis of different types of nanomaterials, characterization of different types of nanomaterials, applications of different types of nanomaterials, including the nanocomposites.

Book Colloidal Metal Oxide Nanoparticles

Download or read book Colloidal Metal Oxide Nanoparticles written by and published by Elsevier. This book was released on 2019-10-16 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Colloidal Metal Oxide Nanoparticles: Synthesis, Characterization and Applications is a one-stop reference for anyone with an interest in the fundamentals, synthesis and applications of this interesting materials system. The book presents a simple, effective and detailed discussion on colloidal metal oxide nanoparticles. It begins with a general introduction of colloidal metal oxide nanoparticles, then delves into the most relevant synthesis pathways, stabilization procedures, and synthesis and characterization techniques. Final sections discuss promising applications, including bioimaging, biosensing, diagnostic, and energy applications—i.e., solar cells, supercapacitors and environment applications—i.e., the treatment of contaminated soil, water purification and waste remediation. Provides the most comprehensive resource on the topic, from fundamentals, to synthesis and characterization techniques Presents key applications, including biomedical, energy, electronic and environmental Discusses the most relevant techniques for synthesis, patterning and characterization

Book Carbon and Oxide Nanostructures

Download or read book Carbon and Oxide Nanostructures written by Noorhana Yahya and published by Springer Science & Business Media. This book was released on 2011-01-12 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume covers all aspects of carbon and oxide based nanostructured materials. The topics include synthesis, characterization and application of carbon-based namely carbon nanotubes, carbon nanofibres, fullerenes, carbon filled composites etc. In addition, metal oxides namely, ZnO, TiO2, Fe2O3, ferrites, garnets etc., for various applications like sensors, solar cells, transformers, antennas, catalysts, batteries, lubricants, are presented. The book also includes the modeling of oxide and carbon based nanomaterials. The book covers the topics: Synthesis, characterization and application of carbon nanotubes, carbon nanofibres, fullerenes Synthesis, characterization and application of oxide based nanomaterials. Nanostructured magnetic and electric materials and their applications. Nanostructured materials for petro-chemical industry. Oxide and carbon based thin films for electronics and sustainable energy. Theory, calculations and modeling of nanostructured materials.

Book Sustainable Preparation of Metal Nanoparticles

Download or read book Sustainable Preparation of Metal Nanoparticles written by Rafael Luque and published by Royal Society of Chemistry. This book was released on 2013 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This timely publication bridges and presents the latest trends and updates in three hot topics of current and future society: nanomaterials, energy and environment. It provides the state-of-the-art as well as current challenges and advances in the sustainable preparation of metal nanoparticles and their applications. The book fills a critical gap in a multidisciplinary area of high economic, social and environmental importance. Currently, there are no books published that deal with these ever increasing important topics, as most books in this area focus on a particular topic (eg. nanomaterials or catalysis or energy or environment). This is the first multidisciplinary edited book covering the very basics to the more advanced, trendy developments, containing a unique blend of nano, green, renewable and bio.

Book Synthesis and Characterization of Engineered Carbon based Nanoparticles by Arc discharge Plasma

Download or read book Synthesis and Characterization of Engineered Carbon based Nanoparticles by Arc discharge Plasma written by and published by . This book was released on 2015 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of nanotechnology is attributed to Nobel prize winner Richard Feynman who gave a very famous, visionary in 1959 (published in 1960) during one of his lectures, saying: "the principles of physic, as far as I can see, do not speak against the possibility of maneuvering things atom by atom". At the time, Feynman's words were received as pure science fiction". Today, we have instruments that allow precisely what Feynman had predicted: creating structures by moving atoms individually. In principle, the ultimate results of this research study leads to the synthesis of magnetic and porous carbon based nanoparticles as the material and tool for biomedical applications. Currently, we are in a battle with a dangerous and destructive diseases such as cancers, and nanotechnology is then presented as a tool that can help us win control. This work is to support medical and other applications of nanotechnology specifically aimed to prepare carbon based nanoparticles. Magnetic nanoparticles are being of great interest because of their unique properties especially in drug delivery, hyperthermia, magnetic resonance imaging and cell separation. In many clinical situations, medication doses are oversized as a result of impaired drug absorption or tissue unspecific delivery. The ultimate goal of magnetically controlled drug delivery and drug therapy is to selectively delivering drug molecules to the diseased site without a concurrent increase in its level in healthy tissues. Consequently, in this research study the objective is to develop an approach to control the synthesis of carbon encapsulated iron nanoparticles in the form of core@shell nanostructure. Accordingly, understanding and revealing the growth mechanism of carbon encapsulated iron nanoparticles is necessary by doing characterization. Furthermore, engineering of suitable carbon based nanoparticles for biomedical applications has been also considered. Common challenges for synthesis of carbon encapsulated iron nanoparticles are improving uniformity, enhancing coating protection and controlling particles compositions, shape and core/shell sizes. In addition, due to the lack of comprehensive understanding of the optimal parameters and formation mechanism most of the current fabrication process are empirical, which means a large number of experimental trials are required to optimize any given process. Since the last two decades, arc discharge technique leads to the discovery of two important carbon based materials, nanotubes and fullerenes. However, the formation of nanomaterials by thermal plasma still remains poorly understood and need further investigation. The focus in this study is on synthesis of carbon based nanoparticles by arc discharge method, particularly carbon encapsulated iron nanoparticles in the form of Core@Shell nanostructure. An arc discharge reactor that was patented by FEMAN group was used with slight modification. The growth processes were elucidated through many experiments and characterizations. Precise control over carbon encapsulated iron nanoparticles were addressed. In addition, a new carbon encapsulated multi iron nanoparticles is introduced. The results have been lead to new elements for understanding the growth mechanism of iron core and carbon shell nanostructure. In order to improve the synthesis process, a new modified arc discharge reactor was developed and implemented. Two new materials are prepared through a new facile synthetic method; carbon nanoparticles decorated by fullerenes and spherical porous carbon microparticles. Last but not least, in this research medical application requirements have been taken into account to prepare suitable nanoparticle.

Book Research Anthology on Synthesis  Characterization  and Applications of Nanomaterials

Download or read book Research Anthology on Synthesis Characterization and Applications of Nanomaterials written by Management Association, Information Resources and published by IGI Global. This book was released on 2021-03-19 with total page 1917 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of nanotechnologies continues to grow, as nanomaterials have proven their versatility and use in many different fields and industries within the scientific profession. Using nanotechnology, materials can be made lighter, more durable, more reactive, and more efficient leading nanoscale materials to enhance many everyday products and processes. With many different sizes, shapes, and internal structures, the applications are endless. These uses range from pharmaceutics to materials such as cement or cloth, electronics, environmental sustainability, and more. Therefore, there has been a recent surge of research focused on the synthesis and characterizations of these nanomaterials to better understand how they can be used, their applications, and the many different types. The Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials seeks to address not only how nanomaterials are created, used, or characterized, but also to apply this knowledge to the multidimensional industries, fields, and applications of nanomaterials and nanoscience. This includes topics such as both natural and manmade nanomaterials; the size, shape, reactivity, and other essential characteristics of nanomaterials; challenges and potential effects of using nanomaterials; and the advantages of nanomaterials with multidisciplinary uses. This book is ideally designed for researchers, engineers, practitioners, industrialists, educators, strategists, policymakers, scientists, and students working in fields that include materials engineering, engineering science, nanotechnology, biotechnology, microbiology, drug design and delivery, medicine, and more.

Book Synthesis  Characterization  and Applications of Graphitic Carbon Nitride

Download or read book Synthesis Characterization and Applications of Graphitic Carbon Nitride written by Sabu Thomas and published by Elsevier. This book was released on 2022-09-21 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synthesis, Characterization and Applications of Graphitic Carbon Nitride: An Uprising Carbonaceous Material offers an up-to-date record on the major findings and observations relating to graphitic carbon nitride-based systems, elaborately covering all the aspects of carbon nitride as chemical stable and pollution-free materials that are easy to prepare in a cost-effective way, along with their applications in photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, sensors and supercapacitors. Graphitic carbon nitride (g-C3N4) is a fascinating visible light photocatalyst, which possesses many properties that can be used for many applications.This makes the book an indispensable reference for (post)-graduate students, researchers in academia and industry, and engineers working in the field of graphitic carbon-nitride-based systems. Includes the applications of graphitic carbon nitride as a photocatalyst for the reduction of CO2 Describes the synthesis structure and properties of graphitic carbon nitride-based systems Deals with the development of graphitic carbon nitride-based nanocomposites Includes hydrogen production via water splitting by using graphitic carbon nitride Describes the applications of graphitic carbon nitride in the field of sensors, solar cells, fuel cells and in analytical chemistry