EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Synthesis and Characterization of Supported Organometallic Rhodium I  Catalysts

Download or read book Synthesis and Characterization of Supported Organometallic Rhodium I Catalysts written by Donald Nilan Marquardt and published by . This book was released on 1974 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 18 maart   6 april 1920

Download or read book 18 maart 6 april 1920 written by and published by . This book was released on 1920 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Synthesis  Characterization and Catalytic Performance of Rhodium and Iridium Complexes Supported in Dealuminated HY Zeolite

Download or read book Synthesis Characterization and Catalytic Performance of Rhodium and Iridium Complexes Supported in Dealuminated HY Zeolite written by Claudia Martinez Macias and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Essentially molecular supported catalysts were synthesized by using organometallic complexes as precursors, such as Rh(CO)2(acac), Rh(C2H4)2(acac), Ir(CO)2(acac), and Ir(C2H4)2(acac) (where acac is acetylacetonate) and HY zeolite as a support. A goal was to obtain highly uniform solid catalysts with well-defined structures. Characterization by X-ray absorption (XAS) and infrared (IR) spectroscopies confirmed the anchoring of the metal to the support with a high degree of uniformity. IR and 29Si and 27Al nuclear magnetic resonance (NMR) spectra characterize the presence of amorphous regions in the zeolite, and scanning transmission electron microscopy (STEM) identifies these amorphous regions, where iridium is more susceptible to aggregation than in the crystalline regions. Treatment of Ir(CO)2/HY zeolite with C2H4 and H2 at room temperature led to a family of species which includes Ir(CO)2, Ir(CO)(C2H4), Ir(CO)(C2H4)2, Ir(CO)(C2H5) and, tentatively, Ir(CO)(H). The identification of the species is based on XAS and IR spectra (including spectra of samples made with isotopically labeled ligands, 13CO and D2O) and density functional theory (DFT) calculations. The catalytic performance of isostructural rhodium and iridium species incorporating CO as a ligand was measured for the ethylene conversion; the CO not only acts as an inhibitor but it also as a probe molecule providing information about the electronic properties of the metal and of the species present during reaction. When isostructural rhodium and iridium diethylene species are bonded near each other on HY zeolite, the iridium complexes alter the selectivity of rhodium by spilling over hydrogen that hinders the interaction between ethylene and the acidic sites of the zeolite that act in concert with the rhodium, causing it to favor ethylene hydrogenation over dimerization. All these results show how structurally simple solid catalysts can be used to facilitate fundamental understanding of catalysts and their performance.

Book Rhodium Catalyzed Hydroformylation

Download or read book Rhodium Catalyzed Hydroformylation written by Piet W.N.M. van Leeuwen and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade there have been numerous advances in the area of rhodium-catalyzed hydroformylation, such as highly selective catalysts of industrial importance, new insights into mechanisms of the reaction, very selective asymmetric catalysts, in situ characterization and application to organic synthesis. The views on hydroformylation which still prevail in the current textbooks have become obsolete in several respects. Therefore, it was felt timely to collect these advances in a book. The book contains a series of chapters discussing several rhodium systems arranged according to ligand type, including asymmetric ligands, a chapter on applications in organic chemistry, a chapter on modern processes and separations, and a chapter on catalyst preparation and laboratory techniques. This book concentrates on highlights, rather than a concise review mentioning all articles in just one line. The book aims at an audience of advanced students, experts in the field, and scientists from related fields. The didactic approach also makes it useful as a guide for an advanced course.

Book Rhodium Catalysis

    Book Details:
  • Author : Carmen Claver
  • Publisher : Springer
  • Release : 2017-12-15
  • ISBN : 3319666657
  • Pages : 291 pages

Download or read book Rhodium Catalysis written by Carmen Claver and published by Springer. This book was released on 2017-12-15 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors. All chapters from Topics in Organometallic Chemistry are published OnlineFirst with an individual DOI. In references, Topics in Organometallic Chemistry is abbrev iated as Top Organomet Chem and cited as a journal.

Book Supported Molecular Rhodium Complexes and Dimers

Download or read book Supported Molecular Rhodium Complexes and Dimers written by Dicle Yardimci and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid catalysts incorporating transition metals are important in industry, providing cost- effective syntheses, ease of separation from products, and control of selectivity. The metal is often expensive and thus often constitutes only about one percent of the catalyst mass, being highly dispersed on a high-area support. Dispersed metals in industrial catalysts are usually highly nonuniform in structure and challenging to characterize, and consequently relationships between structure and catalyst performance are typically less than fully understood. Our approach to the investigation of supported metal catalysts involves the synthesis of uniform catalytic sites that have essentially molecular character. Supported molecular catalysts can be characterized spectroscopically to provide fundamental understanding of the catalyst structure under reactive atmospheres, and thereby determination of structural changes of working catalysts that can be correlated with the catalytic activity and selectivity. The sample characterization techniques used in this work included infrared (IR), extended X-ray absorption fine structure (EXAFS), and X-ray absorption near edge structure (XANES) spectroscopies, as well as gas chromatography (GC) and mass spectrometry (MS) to characterize reaction products. The catalysts were prepared from the organometallic precursor Rh(C2H4)2(C5H7O2) and the supports MgO and zeolite HY. These catalysts initially incorporated site-isolated, mononuclear rhodium complexes on the supports. The complexes on MgO were treated in H2 at elevated temperatures to form the smallest supported rhodium clusters--rhodium dimers. These catalysts are essentially molecular in character and allowed tailoring of the rhodium nuclearity, the ligands bonded to the rhodium, and the rhodium-support interface. The catalysts incorporated mononuclear Rh(C2H4)2 and Rh(CO)2 complexes; dimeric rhodium clusters with ethyl ligands, and dimeric rhodium clusters with CO ligands. These were tested for the hydrogenation of ethylene. Rhodium in various forms is highly active for catalytic hydrogenation of olefins. However, rhodium has been little investigated for diene hydrogenation, because, like other noble metals in the form of supported clusters or particles, it is unselective. We postulated that new catalytic chemistry of rhodium could emerge if the catalytic species were essentially molecular so that they could be tuned by the choice of the rhodium nuclearity and ligands. Thus, we investigated the influence of the following catalyst design variables on the activity and selectivity of supported rhodium for 1,3-butadiene hydrogenation: (a) the metal nuclearity, ranging from one to several; (b) the electron-donor properties of the support (MgO vs. zeolite Y); and (c) other ligands on the rhodium, including reactive hydrocarbons (ethylene or ethyl) and CO. The data show that extremely small MgO-supported rhodium clusters that are partially carbonylated are highly active and selective for the hydrogenation of 1,3-butadiene to give n-butenes. The support, the rhodium nuclearity, and the ligands on rhodium are crucial to the catalyst selectivity, transforming a metal that is typically regarded as unselective for 1,3-butadiene hydrogenation into one that is highly selective even at high conversions. Transition metals in complexes and clusters tend to aggregate to form of more stable, bulk particles under reactive atmospheres, causing catalyst deactivation. We investigated the initial steps of the aggregation of supported metal species that were highly dispersed on MgO and zeolite HY, synthesizing samples that incorporated supported rhodium complexes bonded to ligands with different reactivities (including the support), and then spectroscopically investigated the formation of extremely small rhodium clusters in the presence of H2. The stability of the rhodium complexes and the stoichiometry of the surface-mediated transformations are regulated by the support and the other ligands bonded to the rhodium, being prompted at a lower temperature with zeolite HY than the better electron-donor MgO when the rhodium complexes incorporate ethylene ligands, but occurring more facilely on the MgO than on the zeolite when the ligands are CO. The preparation of highly uniform rhodium dimers is possible. We infer that results such as those presented here may be useful in guiding the design of stable, highly dispersed supported metal catalysts by choice of the support and other ligands on the metal.

Book Supported Molecular Rhodium Complexes and Clusters

Download or read book Supported Molecular Rhodium Complexes and Clusters written by Ann Jia-Bao Liang and published by . This book was released on 2008 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Preparation  Characterization  and Catalytic Activity of Some Organometallic Rhodium I  Catalysts Supported on Polyorganosiloxane Polymers

Download or read book Preparation Characterization and Catalytic Activity of Some Organometallic Rhodium I Catalysts Supported on Polyorganosiloxane Polymers written by Mark Oliver Farrell and published by . This book was released on 1978 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Synthesis  Characterization  and Catalytic Applications of Heteropolyanion supported Rhodium I  and Iridium I

Download or read book The Synthesis Characterization and Catalytic Applications of Heteropolyanion supported Rhodium I and Iridium I written by David John Edlund and published by . This book was released on 1987 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Rhodium Based Mono and Bi metallic Nanoparticles

Download or read book Rhodium Based Mono and Bi metallic Nanoparticles written by Mahmoud Ibrahim and published by . This book was released on 2016 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, synthesis, characterization and catalytic applications of mono- and bi-metallic rhodium-based nanoparticles are reported. Rhodium has been chosen as a primary metal given its high interest in catalysis, mainly in hydrogenation and hydroformylation reactions. The synthesis of mono-metallic rhodium nanoparticles (NPs) is the core of this work. It was performed by decomposition of the organometallic complex [Rh(C3H5)3] in solution under dihydrogen pressure and in the presence of different stabilizers including ligands and polymers to control the growth of the particles. Selected nanoparticles were deposited on the surface of amino-functionalized magnetic silica as a support for recovery and recycling concerns in catalysis. Diverse bi-metallic nanoparticles have been also prepared in one-pot conditions by co-decomposition of the [Rh(C3H5)3] with other organometallic precursors including [Ni(cod)2], [Ru(cod)(cot)], [Pt(nor)3] and [Pd(dba)2]2. Tuning of the metal ratios between [Rh] and the second metal [M], or of the nature and the amount of the stabilizer used for the synthesis allowed to obtain nanoparticles of different sizes and chemical compositions. The characterization of the obtained nanoparticles was performed by using a combination of state-of-art techniques (TEM, HRTEM, STEM-EDX, ICP, WAXS, EXAFS, Xanes, XPS, NMR...). Surface studies were carried out in some cases, by adsorbing CO on the surface of the particles which was followed by spectroscopic techniques (FT-IR, NMR) to probe their surface state. Some of these nanoparticles were investigated in catalytic reactions, mainly hydrogenation with Rh NPs and hydrogenolysis for RhNiOx NPs. Both colloidal and supported catalytic studies were carried out in the case of hydrogenation catalysis. The originality of this work lies in the development of simple synthesis tools inspired from organometallic chemistry to get well-controlled rhodium-based nanoparticles in terms of size, size distribution, composition and surface state, all these parameters being important whatever the target application. The interest of the obtained nanoparticles in catalysis has been also evidenced in different reactions. This PhD work may open new opportunities of research both in nanochemistry and catalysis.

Book Rhodium Catalysis in Organic Synthesis

Download or read book Rhodium Catalysis in Organic Synthesis written by Ken Tanaka and published by John Wiley & Sons. This book was released on 2019-05-06 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: An essential reference to the highly effective reactions applied to modern organic synthesis Rhodium complexes are one of the most important transition metals for organic synthesis due to their ability to catalyze a variety of useful transformations. Rhodium Catalysis in Organic Synthesis explores the most recent progress and new developments in the field of catalytic cyclization reactions using rhodium(I) complexes and catalytic carbon-hydrogen bond activation reactions using rhodium(II) and rhodium(III) complexes. Edited by a noted expert in the field with contributions from a panel of leading international scientists, Rhodium Catalysis in Organic Synthesis presents the essential information in one comprehensive volume. Designed to be an accessible resource, the book is arranged by different reaction types. All the chapters provide insight into each transformation and include information on the history, selectivity, scope, mechanism, and application. In addition, the chapters offer a summary and outlook of each transformation. This important resource: -Offers a comprehensive review of how rhodium complexes catalyze a variety of highly useful reactions for organic synthesis (e.g. coupling reactions, CH-bond functionalization, hydroformylation, cyclization reactions and others) -Includes information on the most recent developments that contain a range of new, efficient, elegant, reliable and useful reactions -Presents a volume edited by one of the international leading scientists working in the field today -Contains the information that can be applied by researchers in academia and also professionals in pharmaceutical, agrochemical and fine chemical companies Written for academics and synthetic chemists working with organometallics, Rhodium Catalysis in Organic Synthesis contains the most recent information available on the developments and applications in the field of catalytic cyclization reactions using rhodium complexes.

Book Atomically Precise Methods for Synthesis of Solid Catalysts

Download or read book Atomically Precise Methods for Synthesis of Solid Catalysts written by Sophie Hermans and published by Royal Society of Chemistry. This book was released on 2015 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: With techniques bridging the gap between surface science and heterogeneous catalysis the book presents a tool-kit for anyone wishing to prepare and define solid catalysts.

Book Supported Mono  and Bimetallic Complexes and Clusters

Download or read book Supported Mono and Bimetallic Complexes and Clusters written by Joseph David Kistler and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Site-isolated solid supported metal catalysts are important in industry and technology due to the cost efficiency to make and to recover and reuse them. These types of materials have catalytic properties similar to molecular complexes in solution while being easy to separate in heterogeneous catalytic reactions. The goal of this work was to synthesize supported metal complex catalysts while maintaining uniform catalytic sites. The syntheses were performed using precise glovebox and Schlenk techniques to achieve these highly uniform structures. These materials were then used to understand the relationship between structure of a catalytic site and the activity of the catalyst. This fundamental understanding of catalysts is important in advancing the field of catalysis. The structure of the catalysts were characterized using infrared (IR), extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies along with high angle annular dark field- scanning transmission electron microscopy (HAADF-STEM), with the HAADF-STEM work carried out by colleagues in other research groups. The catalytic activity of the catalysts was examined with gas chromatography (GC) and mass spectrometry (MS). The samples characterized in this work include complexes and clusters of second and third row transition metals supported on highly crystalline metal oxides. Specifically, there is a large focus in this work on supported rhodium complexes prepared from the organometallic precursor, Rh(C2H4)2(C5H7O2) and a pre-calcined magnesium oxide (MgO). This specific catalyst is important as not only is it active for olefin hydrogenation at mild temperatures but also there are reports of a unique surface mediated synthesis of uniform rhodium dimers, which are ideal for catalytic comparison of structures with different nuclearities. Reactivities of the MgO-supported rhodium complexes and dimers for carbon monoxide oxidation were investigated with the results showing the dimers were significantly more active for the reaction at 353 K. The stability of the dimers was tested in different reactive conditions with the results showing that under conditions with excess oxygen, the dimers are less stable and less active than under conditions with excess carbon monoxide.A bimetallic catalyst was synthesized on MgO incorporating rhodium and osmium using Rh(C2H4)2 (acac) and Os3(CO)12 as precursors. A unique synthesis method was developed to create a site-isolated segregated bimetallic catalyst with the osmium and rhodium sites acting independently of each other for ethylene hydrogenation at 298 K. The metals remained structurally segregated and catalytically independent even following reduction in H2 at 393 K. Zeolites, another class of highly crystalline supports, were studied to gain information on the support effects in catalysts. The analogous rhodium complexes as were synthesized on the MgO were synthesized on zeolite HY. These catalysts were tested to determine structural and catalytic stability under hydrogen, a reducing gas, and CO, a catalyst poison, with the results showing that, as compared to the complexes on zeolite HY, MgO-supported rhodium complexes form more uniform stable clusters under H2 and develop unique catalytic properties, selectivity for partial hydrogenation of dienes, when exposed to CO. Another zeolite, KLTL, was studied with supported platinum complexes synthesized from the salt precursor, Pt(NH3)4(NO3)2. This catalyst was oxidized at 633K to form supported single-atom platinum complexes. Both the as-prepared Pt(NH3)4 and oxidized PtOx complexes were analyzed structurally and studied as catalysts for CO oxidation. The oxidized platinum complexes proved to have significantly higher activity for CO oxidation at 423 K. Furthermore, HAADF-STEM was used to directly identify the locations of the platinum atoms in the pores of the zeolite before and after oxidative treatment, providing a method of ex-situ tracking of supported metal atoms.

Book Synthesis  Characterization and Catalytic Activity of Highly Dispersed Metal and Metal Oxide supported Metal Particals Derived from Organometallic Precursors

Download or read book Synthesis Characterization and Catalytic Activity of Highly Dispersed Metal and Metal Oxide supported Metal Particals Derived from Organometallic Precursors written by Zhibang Duan and published by . This book was released on 1993 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Organometallic Reactions

    Book Details:
  • Author : Ernest I. Becker
  • Publisher : John Wiley & Sons
  • Release : 1971
  • ISBN : 9780471061304
  • Pages : 470 pages

Download or read book Organometallic Reactions written by Ernest I. Becker and published by John Wiley & Sons. This book was released on 1971 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Prepatation  Characterization and Catalytic Activity of Some Organometallic Rhodium I  Catalysts Supported on Polyorganosiloxane Polymers

Download or read book Prepatation Characterization and Catalytic Activity of Some Organometallic Rhodium I Catalysts Supported on Polyorganosiloxane Polymers written by Mark Oliver Farrell and published by . This book was released on 1978 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Organometallics as Catalysts in the Fine Chemical Industry

Download or read book Organometallics as Catalysts in the Fine Chemical Industry written by Matthias Beller and published by Springer. This book was released on 2012-08-31 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Johannes G. de Vries: Pd-catalyzed coupling reactions.- Gregory T. Whiteker and Christopher J. Cobley: Applications of Rhodium-Catalyzed Hydroformylation in the Pharmaceutical, Agrochemical and Fragrance Industries.- Philippe Dupau: Ruthenium-catalyzed Selective Hydrogenation for Flavor and Fragrance Applications.- Hans-Ulrich Blaser, Benoît Pugin and Felix Spindler: Asymmetric Hydrogenation.- Ioannis Houpis: Case Study: Sequential Pd-catalyzed Cross-Coupling Reactions; Challenges on Scale-up.- Adriano F. Indolese: Pilot Plant Scale Synthesis of an Aryl-Indole - Scale up of a Suzuki Coupling.- Per Ryberg: Development of a Mild and Robust Method for Palladium Catalysed Cyanation on Large Scale.- Cheng-yi Chen: Application of Ring Closing Metathesis Strategy to the Synthesis of Vaniprevir (MK-7009), a 20-Membered Macrocyclic HCV Protease Inhibitor.