EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Surface Properties and Flow Behavior of Foams in Relation to Fluid Displacement in Porous Media

Download or read book Surface Properties and Flow Behavior of Foams in Relation to Fluid Displacement in Porous Media written by Tien-Feng Tyrone Ling and published by Palala Press. This book was released on 2015-09-09 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Book The Flow of Foam Through Porous Media

Download or read book The Flow of Foam Through Porous Media written by Suhail Ashraf Khan and published by . This book was released on 1965 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Petroleum Abstracts  Literature and Patents

Download or read book Petroleum Abstracts Literature and Patents written by and published by . This book was released on 1990 with total page 1416 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Enhanced Oil Recovery  II

Download or read book Enhanced Oil Recovery II written by E.C. Donaldson and published by Elsevier. This book was released on 1989-07-01 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by foremost experts in the field, and formulated with attention to classroom use for advanced studies in reservoir characterization and processes, this book reviews and summarises state-of-the-art progress in the field of enhanced oil recovery (EOR). All of the available techniques: alkaline flooding; surfactant flooding; carbon dioxide flooding; steam flooding; in-situ combustion; gas injection; miscible flooding; microbial recovery; and polymer flooding are discussed and compared. Together with Volume I, it presents a complete text on enhanced recovery technology and, hence, is an almost indispensible reference text.This second volume compliments the first by presenting as complete an analysis as possible of current oilfield theory and technology, for accomplishment of maximum production of oil. Many different processes have been developed and field tested for enhancement of oil recovery. The emerging philosophy is that no single process is applicable to all petroleum reservoirs. Each must be treated as unique, and carefully evaluated for characteristics that are amenable to one or two of the proven technologies of EOR. This book will aid the engineer in field evaluation and selection of the best EOR technology for a given oilfield. Even the emerging technology of microbial applications to enhance oil recovery are reviewed and explained in terms that are easily understood by field engineers.The book is presented in a manner suitable for graduate studies. The only addition required of teachers is to supply example problems for class work. An appendix includes a reservoir mathematic model and program for general application that can also be used for teaching.

Book Energy Research Abstracts

Download or read book Energy Research Abstracts written by and published by . This book was released on 1994-02 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fossil Energy Update

Download or read book Fossil Energy Update written by and published by . This book was released on 1978 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Study of Fluids Flow through Porous Media Using Microfluidic Devices

Download or read book The Study of Fluids Flow through Porous Media Using Microfluidic Devices written by Feng Guo and published by . This book was released on 2019 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this research is implementing glass-fabricated microfluidic devices to study problems involving fluid flow through porous media problems, including; foam flooding in enhanced oil recovery (EOR), immiscible displacement instability, and CO2 sequestration in a deep saline aquifer. The relatively low viscosity and density of CO2 causes severe fingering, gravity override and high mobility through high permeability layers or fractures, which leads to low sweep efficiency in porous media. CO2 foam flooding stabilized by nanoparticles (NPs) is able to significantly increase CO2 injectant apparent viscosity thereby reducing its mobility and increasing the volumetric sweep efficiency in EOR and sequestration. A deep understanding of flow behaviors and displacement instabilities of CO2 (foam and gas) in porous media enhances the ability to predict oil recovery and CO2 storage and inform reservoir engineering decisions. This dissertation provides details of experimental work performed in NP-stabilized CO2 foam flooding, immiscible displacements and CO2 sequestration using different fabricated microfluidic devices. Several novel NPs candidates are investigated and evaluated in terms of foam stability and oil recovery. The flow behavior of CO2 foam and the resulting incremental oil recovery are investigated in both homogeneous and heterogeneous porous media. Flow instabilities and phase diagrams with boundaries of three flow regimes of immiscible displacement are investigated. In addition, the CO2 gas/foam storage capacity and efficiency in a deep saline aquifer are studied. In order to study NP-stabilized CO2 foam flooding in porous media, a homogeneous microfluidic device is fabricated in which the pore network is based on a 2D representation of a sample of Berea sandstone. Foam properties of NPs stabilized CO2 foam using silica (Si), nanoclay, fly ash and iron oxide (IO) and the resulting improvement in oil recovery are investigated using a series of modified bulk foam tests and microfluidic experiments. Results show that the size and/or size distribution, shape, and surface charge of the particles are influential parameters governing the foam stability and formability which have a direct relationship with oil recovery performance. The displacement observation shows the silica and fly ash NPs assisted by surfactant mixture (Alpha-Olefin Sulfonate (AOS)-Lauramidopropyl Betaine (LAPB)) generated stable foams and resulted in high ultimate oil recoveries (over 90%). Even though IO-surfactant mixtures generate foams with relatively inferior stability characteristics and ultimate recovery, approximately three quarters of the IO NPs are recovered once exposed to a magnetic field. Recovered IO NPs have the potential to be reused in EOR process. The implement of by-product fly ash and recyclable IO NP provides potential advantage of NPs on a commercial scale in EOR processes. A heterogeneous microfluidic device is fabricated, which consisted of a centrally located low permeability zone and two high permeability zones on its sides, to study flow behaviors of CO2 foam and its impact on mobility control in displacing oil in a heterogeneous porous medium. The results show that foam is able to mobilize and recover oil trapped in the low permeability zone by increasing the resistance to flow in the high permeability zones and diverting the surfactant solution into the adjacent low-permeability zone. Foam remains gas-rich in the high permeability zones and solvent-rich in the low permeability zone throughout the experiments. The observed displacement dynamics are explained by characterizing channel geometries (trapezoid) and calculating capillary entry pressure values for various fluids and zones of the medium. Flow behaviors and instabilities in two phase immiscible displacements are addressed using a glass microfluidic device. A series of microfluidic device immiscible displacement experiments are conducted across a range of capillary numbers (Ca) of 1E-4 to 9E-8 and viscosity ratio (M) from 1E-4 to 13.6E3. The microfluidic device features a water-wet porous medium based on a two-dimensional representation of a Berea sandstone; the displacement processes are captured using a high-resolution camera that allows visualization of the entire domain, while being able to resolve features as small as 10 μm. The study reports a correlation between fractal dimension of displacement fronts and displacement front patterns in the porous medium. Three flow regimes with boundaries are mapped on a two-dimensional parameter space (log M and log Ca), and phase diagrams proposed in the literature are superimposed for comparison. Results suggest that the transition regime may occupy a much larger region of the flow regime diagram than is suggested in recent literature. This two-phase immiscible displacement study not only extended works of previous studies using an advanced glass microfluidic device but also it may also help understand macroscopic processes at the continuum scale and provide insights into designing engineered porous media such as exchange columns and membranes with respect to desired immiscible displacement behaviors. In order to study CO2 sequestration in an aquifer with multiple variables, namely, fluids’ interfacial tension, injection rate, viscosity and the characteristics of the porous medium, a custom microfluidic device is developed. The pore network is based on a mosaic of Scanning Electron Microscopy (SEM) images of a thin section of the Lower Cretaceous Washita-Fredericksburg, which is a saline aquifer-bearing formation in east-central Mississippi, USA. The study investigates the effects of those variables on CO2 gas and foam injection into the brine-saturated porous medium. The results suggest that higher injection rates and CO2 foam injection are able to improve CO2 saturation, and therefore storage, in the microfluidic device; ultimate CO2 saturation from foam injection are approximately 20%-40% higher compared to results from gas injection. Thus, CO2 foam injection is a promising approach to reduce CO2 mobility and optimize the CO2 storage capacity in saline aquifer formations. In addition, legislation of CO2 sequestration and potential advantages of using CO2 foam for geological CO2 sequestration in the aforementioned saline aquifer, which is currently under study for commercial-scale CO2 storage, are also discussed. This research study shows advantages of using glass fabricated microfluidic devices with complex configurations to study several flow-through porous media problems. It enables visualization of fluids distributions and displacement fronts inside various porous media, therefore, providing insights into microscale displacement processes help elucidate fundamental mechanisms responsible for the observed flow behaviors.

Book SPE Reservoir Engineering

Download or read book SPE Reservoir Engineering written by and published by . This book was released on 1992 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Porous Media  Physics  Models  Simulation   Proceedings Of The International Conference

Download or read book Porous Media Physics Models Simulation Proceedings Of The International Conference written by M Panfilov and published by World Scientific. This book was released on 2000-01-11 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book concerns a rapidly developing area of science that deals with the behavior of porous media saturated by fluids. Three basic aspects of this field are rather uniformly balanced in the book; namely, complex physical mechanisms of processes in porous media, new mathematical models, and numerical methods of process study. The following topics are included: homogenization and up-scaling of flow through heterogeneous media; micro-structural laws of complex flow at the pore scale; flow with phase transition and chemical reactions in porous media; wave propagation in saturated porous media; numerical model of flow in natural oil reservoirs; non-classical models of flow, percolation, fractals, foam flow; multi-phase flow with free surface. The contributors to this volume are leading researchers in the field.

Book Flow of Foam Through Porous Micromodels

Download or read book Flow of Foam Through Porous Micromodels written by Owete Sunday Owete and published by . This book was released on 1982 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Rheology Abstracts

Download or read book Rheology Abstracts written by and published by . This book was released on 1981 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Foams  Physics  Chemistry and Structure

Download or read book Foams Physics Chemistry and Structure written by Ashley J. Wilson and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foams and froths are an important feature of everyday life; one only has to think of shaving foam, foam upholstery, fire fighting foam, bread, bear head, and ice cream. Less obvious but equally important are the foams and foaming processes which are being exploited in ever more complex and imaginative ways in industry. However, the unusual nature of foams, the fact that they are neither solids or liquids, and their very fragility has prevented scientists from obtaining a thorough understanding of even the basic principles of foam formation and stability. This volume presents papers on the physics, chemistry, structure and ultrastructure of foams by contributors from a wide range of backgrounds and research disciplines. The aim of the book is to present a unique multi-disciplinary cross section of work currently being undertaken on the subject of foams.

Book Petroleum Abstracts

Download or read book Petroleum Abstracts written by and published by . This book was released on 1998 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Simulation of Foam Displacement in Porous Media

Download or read book Simulation of Foam Displacement in Porous Media written by and published by . This book was released on 1993 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foam is an excellent fluid for achieving mobility control of gas in porous media. Practical application of foams for EOR processes, however requires a predictive model of foam displacement. Further, quantitative information on foam-flow behavior at reservoir flow rates and pressures is required as input to any field-scale modeling. An experimental and mechanistic-modeling study is reported for the transient flow of foam through 1.3 [mu]m2 (1.3 D) Boise sandstone at backpressures in excess of 5 MPa (700 psi) over a quality range from 0.80 to 0.99. Total superficial velocities range from as little as 0.42 to 2.20 m/day (1.4 ft/day to 7 ft/day). Sequential pressure taps and gamma-ray densitometry measure flow resistance and in-situ liquid saturations, respectively. We garner experimental pressure and saturation profiles in both the transient and steady states. Adoption of a mean-size foam-bubble conservation equation along with the traditional reservoir simulation equations allows mechanistic foam simulation. Since foam mobility depends heavily upon its texture, the bubble population balance is both useful and necessary as the role of foam texture must be incorporated into any model which seeks accurate prediction of flow properties. Our model employs capillary-pressure-dependent kinetic expressions for lamellae generation and coalescence and also a term for trapping of lamellae. Additionally, the effects of surfactant chemical transport are included. We find quantitative agreement between experimental and theoretical saturation and pressure profiles in both the transient and steady states.

Book Foams

    Book Details:
  • Author : Isabelle Cantat
  • Publisher :
  • Release : 2013-07-11
  • ISBN : 0199662894
  • Pages : 278 pages

Download or read book Foams written by Isabelle Cantat and published by . This book was released on 2013-07-11 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, beginners, engineers, and researchers entering the field can easily find clear, up-to-date answers to their questions regarding the physical and physico-chemical properties of aqueous foams, as well as their numerous industrial applications, explained using current knowledge of their structure, their stability, and their rheology.

Book Proceedings of the International Conference Porous Media  Physics  Models  Simulation

Download or read book Proceedings of the International Conference Porous Media Physics Models Simulation written by Anatoli? Nikolaevich Dmitrievski? and published by World Scientific. This book was released on 2000 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book concerns a rapidly developing area of science that deals with the behavior of porous media saturated by fluids. Three basic aspects of this field are rather uniformly balanced in the book; namely, complex physical mechanisms of processes in porous media, new mathematical models, and numerical methods of process study. The following topics are included: homogenization and up-scaling of flow through heterogeneous media; micro-structural laws of complex flow at the pore scale; flow with phase transition and chemical reactions in porous media; wave propagation in saturated porous media; numerical model of flow in natural oil reservoirs; non-classical models of flow, percolation, fractals, foam flow; multi-phase flow with free surface. The contributors to this volume are leading researchers in the field.