EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Surface Passivation of Crystalline Silicon Solar Cells by Amorphous Silicon Films

Download or read book Surface Passivation of Crystalline Silicon Solar Cells by Amorphous Silicon Films written by Heiko Plagwitz and published by . This book was released on 2007 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Efficiency Crystalline Silicon Solar Cells

Download or read book High Efficiency Crystalline Silicon Solar Cells written by Eun-Chel Cho and published by MDPI. This book was released on 2021-01-06 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is composed of 6 papers. The first paper reports a novel technique for the selective emitter formation by controlling the surface morphology of Si wafers. Selective emitter (SE) technology has attracted renewed attention in the Si solar cell industry to achieve an improved conversion efficiency of passivated-emitter rear-contact (PERC) cells. In the second paper, the temperature dependence of the parameters was compared through the PERC of the industrial-scale solar cells. As a result of their analysis, PERC cells showed different temperature dependence for the fill factor loss as temperatures rose. The third paper reports the effects of carrier selective front contact layer and defect state of hydrogenated amorphous silicon passivation layer/n-type crystalline silicon interface. The results demonstrated the effects of band offset determined by band bending at the interface of the passivation layer and carrier selective front contact layer. In addition, the nc-SiOx: H CSFC layer not only reduces parasitic absorption loss but also has a tunneling effect and field-effect passivation. The fourth paper reports excimer laser annealing of hydrogenated amorphous silicon film for TOPCon solar cell application. This paper analyzes the crystallization of a-Si:H via excimer laser annealing (ELA) and compared this process with conventional thermal annealing. The fifth paper reports the contact mechanism between Ag–Al and Si and the change in contact resistance (Rc) by varying the firing profile. Rc was measured by varying the belt speed and peak temperature of the fast-firing furnace. The sixth paper reports a silicon tandem heterojunction solar cell based on a ZnO/Cu2O subcell and a c-Si bottom subcell using electro-optical numerical modeling. The buffer layer affinity and mobility together with a low conduction band offset for the heterojunction are discussed, as well as spectral properties of the device model.

Book Surface Passivation of Industrial Crystalline Silicon Solar Cells

Download or read book Surface Passivation of Industrial Crystalline Silicon Solar Cells written by Joachim John and published by Institution of Engineering and Technology. This book was released on 2018-11-15 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surface passivation of silicon solar cells describes a technology for preventing electrons and holes to recombine prematurely with one another on the wafer surface. It increases the cell's energy conversion efficiencies and thus reduces the cost per kWh generated by a PV system.

Book Surface Passivation of Crystalline Silicon by Dual Layer Amorphous Silicon Films

Download or read book Surface Passivation of Crystalline Silicon by Dual Layer Amorphous Silicon Films written by Dmitri S. Stepanov and published by . This book was released on 2011 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Response Surface Methodology is used in this work to optimize the deposition conditions of SiNx. Optimization of the response surface function yielded deposition conditions that materialized in a surface recombination velocity of less than 4cm/s. The BACH (Back Amorphous Crystalline silicon Heterojunction) cell concept makes use of this dual layer a-Si:H/SiN x stack to form a high efficiency photovoltaic device. The high quality passivating structure can result in the BACH solar cell device with more than 20% conversion efficiency.The probability of recombination of photogenerated electron hole pairs in crystalline silicon is governed by the density of surface defect states and the density of charge carriers. Depositions of intrinsic hydrogenated amorphous silicon (a-Si:H) in dc saddle field (DCSF) PECVD system and hydrogenated amorphous silicon nitride (SiNx) in rf PECVD system forms a dual layer stack on c-Si, which results in an excellent passivation of the surface and an anti-reflection coating.

Book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells

Download or read book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells written by Wilfried G. J. H. M. van Sark and published by Springer Science & Business Media. This book was released on 2011-11-16 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today’s solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.

Book Crystalline Silicon Surface Passivation by Amorphous Silicon Compounds

Download or read book Crystalline Silicon Surface Passivation by Amorphous Silicon Compounds written by Roman Petres and published by Sudwestdeutscher Verlag Fur Hochschulschriften AG. This book was released on 2011-09 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar cells based on crystalline silicon (c-Si) have the potential to make photovoltaic electricity cheaper than coal-based electric power generation within less than 10 years. The largest cost decrease potential on the cell level lies with improved electronic surface passivation. In this work, the current industry standard, amorphous silicon nitride (a-SiNx: H) deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD), is investigated and compared to amorphous silicon carbide, silicon carbonitride and silicon oxynitride films deposited by both high- and for the first time also low-frequency (LF) PECVD. It is shown that and an explanation offered as to why LF PECVD is capable of excellent surface passivation, comparable to remote-plasma results in literature and higher than previously published for LF PECVD. The achieved surface passivation quality is sufficient for dielectric rear-surface passivation without an underlying diffused back surface field. It is also shown that the purity grade of precursor gases used for film deposition can be lowered significantly without affecting cell efficiency and long-term stability on the module level, allowing for further cost reduction

Book Surface Passivation of Crystalline Silicon by Amorphous Silicon Carbide Films for Photovoltaic Applications

Download or read book Surface Passivation of Crystalline Silicon by Amorphous Silicon Carbide Films for Photovoltaic Applications written by Rafel Ferré Tomàs and published by . This book was released on 2008 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Crystalline Silicon Solar Cells

Download or read book Crystalline Silicon Solar Cells written by Armin G. Aberle and published by . This book was released on 1999 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sputtered Aluminium Oxide and Amorphous Silicon for Silicon Solar Cells

Download or read book Sputtered Aluminium Oxide and Amorphous Silicon for Silicon Solar Cells written by Xinyu Zhang and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-efficiency silicon solar cells have been attracting an increased interest in recent years. Surface passivation is essential for various types of high-performance solar cells, particularly when thinner silicon wafers are used to reduce the material cost. Passivating dielectric thin films have been widely studied and used in solar cells designs, these include atomic-layer deposited (ALD) aluminium oxide, plasma-enhanced chemical vapour deposited (PECVD) silicon nitride and PECVD intrinsic amorphous silicon. The aim of this thesis is to develop and optimise an alternative deposition method for surface passivating films: sputtering. Sputtering is especially attractive for industrial production, due to its high throughput, easy and safe operation and global cost-effectiveness. This thesis has focussed on optimising the reactive sputtering of aluminium oxide, using an aluminium target, and the non-reactive sputtering of amorphous silicon, using a silicon target. A key innovation has been the addition of hydrogen to the mix of gasses that form the plasma, which permits to incorporate hydrogen into the films, leading to a significantly improved surface passivation quality compared to non-hydrogenated films. We have achieved the best surface passivation results by sputtered aluminium oxide to date, with an effective surface recombination velocity of 1 cm/s on 1.5 ohm-cm n-type silicon. This result is similar to the SRV of 0.9 cm/s measured on aluminium oxide films deposited by PA-ALD on the same substrates. Good passivation was also achieved on p-type silicon. The investigations into the reactive sputtering process have shown that the film properties are closely related to the oxidation level of the aluminium target, which can be controlled by adjusting process parameters. It has also been found that the presence of hydrogen in the plasma is beneficial for establishing the optimum conditions of the deposition; not only does the surface passivation quality improve, but the reactive sputtering process becomes easier to control as well.We have also shown - for the first time - that intrinsic amorphous silicon (a-Si:H) films by sputtering deposition are capable of providing an excellent passivation of crystalline silicon surfaces. A SRV of 1.5 cm/s on 1.5 ohm-cm n-type silicon and SRV of 9 cm/s on 1 ohm-cm p-type silicon have been achieved, which are comparable to the commonly used PECVD deposited a-Si:H films. After investigating the film properties using Fourier Transform Infrared Spectroscopy (FTIR), we observe that our sputtered a-Si:H films have a characteristic signature in terms of chemical bonding configurations, where several types of silicon-hydrogen bonds exist. From those measurements we have estimated that there is approximately a 4% hydrogen concentration in the films, sufficient to achieve excellent surface passivation. Finally, the thesis also presents initial attempts at developing doped amorphous silicon films, which could enable the development of an all-sputtered silicon heterojunction solar cell technology. Lightly doped a-Si:H films were deposited using a 1% boron doped silicon target and a 0.01% phosphorus doped silicon target. We have found an appropriate way to avoid surface passivation degradation caused by the doped layer deposition onto an intrinsic a-Si:H layer.

Book Characterization of Surface Passivation of Crystalline Silicon by Hydrogenated Amorphous Silicon Using Photocarrier Radiometry

Download or read book Characterization of Surface Passivation of Crystalline Silicon by Hydrogenated Amorphous Silicon Using Photocarrier Radiometry written by Keith R. Leong and published by . This book was released on 2006 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the silicon heterojunction solar cell, the crystalline silicon (c-Si) surface forms an interface with hydrogenated amorphous silicon (a-Si:H). This thesis reports on the development and evaluation of surface passivation schemes of c-Si with a-Si:H. The passivation consists of a three step process: cleaning of the c-Si surface, etching of the native oxide, and deposition the a-Si:H layer. Evaluation of the passivation schemes was conducted by recombination lifetime measurements using Photocarrier Radiometry (PCR). The SPM, RCA SC1, and SC2 cleaning sequence, followed by either buffered HF, and the growth of the a-Si:H film produced the highest PCR characteristic lifetime (80.9 mus). In the high injection regime, lifetime from PCR correlated with that from mu-PCD within a factor of 1.2 to 2.5. PCR laser annealing of the a-Si:H was observed for laser intensities at or above 2.9 suns. ToF-SIMS measurements identified Na, K, Ca, O, and SiO2 contaminants at the interface.

Book Heterojunction Solar Cells  a Si c Si

Download or read book Heterojunction Solar Cells a Si c Si written by Thomas Mueller and published by Logos Verlag Berlin GmbH. This book was released on 2009 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main focus of the present work is related to the optimization of heterojunction solar cells. The key roles in obtaining high efficient heterojunction solar cells are mainly the plasma enhanced chemical vapor deposition of very low defect layers, and the sufficient surface passivation of all interfaces. In heterojunction solar cells, the a-Si: H/c-Si hetero-interface is of significant importance, since the hetero-interface characteristics directly affect the junction properties and thus solar cell efficiency. In this work, the deposition and film properties of various hydrogenated amorphous silicon alloys, such as a-SiC: H, a-SiO_x: H, and muc-Si: H (standard a-Si: H is used as reference), are employed. Special attention is paid to (i) the front and back surface passivation of the bulk material by high-quality wide-gap amorphous silicon suboxides (a-SiO_x: H), and (ii) the influence of wide-gap high-quality a-Si- and muc-Si-based alloys for use as emitter and back-surface-

Book Amorphous Silicon   Crystalline Silicon Heterojunction Solar Cells

Download or read book Amorphous Silicon Crystalline Silicon Heterojunction Solar Cells written by Wolfgang Rainer Fahrner and published by Springer Science & Business Media. This book was released on 2013-04-23 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to “fill in the blanks” on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

Book Amorphous and Microcrystalline Silicon Solar Cells  Modeling  Materials and Device Technology

Download or read book Amorphous and Microcrystalline Silicon Solar Cells Modeling Materials and Device Technology written by Ruud E.I. Schropp and published by Springer. This book was released on 1998-10-31 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Amorphous silicon solar cell technology has evolved considerably since the first amorphous silicon solar cells were made at RCA Laboratories in 1974. Scien tists working in a number of laboratories worldwide have developed improved alloys based on hydrogenated amorphous silicon and microcrystalline silicon. Other scientists have developed new methods for growing these thin films while yet others have developed new photovoltaic (PV) device structures with im proved conversion efficiencies. In the last two years, several companies have constructed multi-megawatt manufacturing plants that can produce large-area, multijunction amorphous silicon PV modules. A growing number of people be lieve that thin-film photovoltaics will be integrated into buildings on a large scale in the next few decades and will be able to make a major contribution to the world's energy needs. In this book, Ruud E. I. Schropp and Miro Zeman provide an authoritative overview of the current status of thin film solar cells based on amorphous and microcrystalline silicon. They review the significant developments that have occurred during the evolution of the technology and also discuss the most im portant recent innovations in the deposition of the materials, the understanding of the physics, and the fabrication and modeling of the devices.

Book Silicon Heterojunction Solar Cells

Download or read book Silicon Heterojunction Solar Cells written by W.R. Fahrner and published by Trans Tech Publications Ltd. This book was released on 2006-08-15 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.