EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Surface Passivation and Junction Engineering in Silicon

Download or read book Surface Passivation and Junction Engineering in Silicon written by Gaurav Thareja and published by Stanford University. This book was released on 2011 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: The planar silicon MOSFET is facing diminishing performance returns in improvement from device geometry scaling. Two alternative devices are being explored as possible solutions to this problem. The first contender is a multi-gate device (FINFET or surround gate) and the other is a MOSFET with high mobility channel material such as germanium, III-V or carbon. Ge has emerged as an important materials platform during recent years. With its high carrier mobility and the ability to detect and emit photons at telecommunications wavelengths, Ge is an attractive candidate for applications in both high performance electronics and optoelectronics. Moreover due to its compatibility with conventional CMOS fabrication, it can be processed using the standard manufacturing techniques that are currently used for silicon. However Ge does present a number of unique challenges that must be overcome, including issues of surface passivation, low n-type dopant solubility, and high dopant diffusivity. In this work, the unique properties of surface passivation enabled by radical oxidation are discussed. Some of the highlights are low temperature processing, substrate orientation independent growth rate of dielectric and low interface density. Subsequently, this radical oxidation is applied to 3D vertical gate all around (GAA) silicon MOSFET devices. Higher drive current, lower gate leakage and higher gate dielectric breakdown voltage are demonstrated for GAA devices using radical oxidation in comparison to thermal oxidation In the second part, radical oxidation is investigated for GeO2 growth as an interfacial layer in high-k / Ge gate stack. Using MOSCAP and n-MOSFET devices on Ge, low interface state density combined with drive current and electron mobility enhancement is demonstrated for Ge devices. In the third part, the source/drain junctions for Ge are studied. Ultra-shallow junctions using plasma immersion ion implantation are demonstrated. High n-type dopant activation in Ge using laser annealing is realized along with high performance diodes, significant reduction of contact resistance and integration in a MOSFET process flow.

Book Surface Passivation and Junction Engineering in Silicon

Download or read book Surface Passivation and Junction Engineering in Silicon written by Gaurav Thareja and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The planar silicon MOSFET is facing diminishing performance returns in improvement from device geometry scaling. Two alternative devices are being explored as possible solutions to this problem. The first contender is a multi-gate device (FINFET or surround gate) and the other is a MOSFET with high mobility channel material such as germanium, III-V or carbon. Ge has emerged as an important materials platform during recent years. With its high carrier mobility and the ability to detect and emit photons at telecommunications wavelengths, Ge is an attractive candidate for applications in both high performance electronics and optoelectronics. Moreover due to its compatibility with conventional CMOS fabrication, it can be processed using the standard manufacturing techniques that are currently used for silicon. However Ge does present a number of unique challenges that must be overcome, including issues of surface passivation, low n-type dopant solubility, and high dopant diffusivity. In this work, the unique properties of surface passivation enabled by radical oxidation are discussed. Some of the highlights are low temperature processing, substrate orientation independent growth rate of dielectric and low interface density. Subsequently, this radical oxidation is applied to 3D vertical gate all around (GAA) silicon MOSFET devices. Higher drive current, lower gate leakage and higher gate dielectric breakdown voltage are demonstrated for GAA devices using radical oxidation in comparison to thermal oxidation In the second part, radical oxidation is investigated for GeO2 growth as an interfacial layer in high-k / Ge gate stack. Using MOSCAP and n-MOSFET devices on Ge, low interface state density combined with drive current and electron mobility enhancement is demonstrated for Ge devices. In the third part, the source/drain junctions for Ge are studied. Ultra-shallow junctions using plasma immersion ion implantation are demonstrated. High n-type dopant activation in Ge using laser annealing is realized along with high performance diodes, significant reduction of contact resistance and integration in a MOSFET process flow.

Book Junction Engineering and Device Design for Silicon Heterojunction and Interdigitated Back Contact Silicon Heterojunction Solar Cells

Download or read book Junction Engineering and Device Design for Silicon Heterojunction and Interdigitated Back Contact Silicon Heterojunction Solar Cells written by Lei Zhang and published by . This book was released on 2018 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell currently holds the record conversion efficiency for non-concentrated single junction silicon solar cells with an efficiency of 26.7%. The aim of this dissertation is to understand the fundamental loss mechanisms of IBC-SHJ related to the rear surface design and to minimize these losses utilizing advanced numerical simulations, novel test structure characterizations and scalable device fabrication processes. The findings in this dissertation will serve as guidance for the industry-oriented R & D efforts to make IBC-SHJ mass-production cost-effective without compromising the performance. The outcomes of this dissertation are four-fold: ☐ First, a lifetime simulation tool based on the extended Shockley-Read-Hall (SRH) recombination formalism has been developed as guidance to investigate c-Si surface passivation. Plasma enhanced chemical vapor deposition (PECVD) conditions of intrinsic hydrogenated amorphous silicon (i.a-Si:H) films were explored for passivating the commercial n-type c-Si (n.c-Si) wafer surfaces and correlation to the properties of films was established through material characterizations. Passivated lifetime > 1ms with implied open circuit voltage (iVOC) > 700 mV has been achieved. The trade-off between front surface absorption loss and rear surface emitter junction valence band offset effect was simultaneously accommodated with an optimized i.a-Si:H layer. ☐ Second, an advanced two-dimensional (2-D) IBC-SHJ simulation model has been developed to investigate the IBC-SHJ device rear surface design of three regions: emitter contact, base contact and the non-metallized gap region between them. Simulations suggested that IBC-SHJ performance is more sensitive to the surface passivation quality in emitter and gap regions than the base region. The trade-offs between VOC and FF were diagnosed by experimentally varying p-type a-Si:H layers (p.a-Si:H) and their application on SHJ test structures. A graded high-low p.a-Si:H emitter structure was established, demonstrating IBC-SHJ solar cell efficiency of 20.2% fabricated by complex three-step photolithography (PL) process. ☐ Thirdly, to minimize the lateral transport loss over the rear surface gap region, four different passivation structures were investigated utilizing potential industrially-scalable process. Interface defect density (Dit) and interface charge density (Qpass) for the four structures were extracted utilizing a lifetime simulator. The 2-D IBC-SHJ device simulations indicated that > 21.5% conversion efficiency is achievable on devices fabricated with our current process. However, experimental results of IBC-SHJ fabricated with simplified processes suggested that a gap passivation structure which induces inversion at n.c-Si surface should be avoided. ☐ Fourth, to validate the inversion layer effect on IBC-SHJ device, a novel three-terminal rear SHJ test structure was invented. This structure enabled an external DC bias to be applied onto one of the rear contacts for voltage-modulated laser-beam-induced-current (VM-LBIC) measurements. Additionally, device performance was analyzed before and after intentional localized laser damage to base region, which confirmed the detrimental surface inversion effect if any localized high surface recombination region exists within a diffusion length distance from emitter region. ☐ Based on these results, for a commercially viable IBC-SHJ fabrication on n-type c-Si wafer, the following recommendations can be made: 1) Avoid passivation scheme with negative charge that might form inversion layer at the rear surface; 2) Minimize area of localized defective regions with high surface recombination velocity (SRV) and; 3) Low resolution alignment patterning processes which yield gap widths ≥ 100 μm are acceptable if the gap region of IBC-SHJ has an SRV ≤ 5 cm/s.

Book Instabilities in Silicon Devices

Download or read book Instabilities in Silicon Devices written by Gérard Barbottin and published by North Holland. This book was released on 1986 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt: An instructive and up-to-date manual for: bull; Engineers and technicians working in the semiconductor industry in such fields as: circuit design, manufacturing engineering, material and process characterization, quality and reliability assurance, failure analysis. bull; Graduate students and research scientists in material science and electrical engineering, interested in insulator physics, semiconductor physics, device physics and electronics. Today, silicon technology forms the basis of a worldwide, multi-million dollar component industry. The reasons for this expansioncan be found not only in the physical properties of silicon but also in the unique properties of the silicon-silicon dioxide interface. In spite of steady improvements in fabrication processes, silicon devices are still subject to undesired electrical phenomena referred to as 'instabilities'. These are due mostly to the imperfect nature either of the insulators used and/or of the semiconductor-insulator interface. The problem of instabilities is addressed in this volume which is the result of a fruitful cooperation between engineers working in the silicon industry, research scientists in the filed of micro-electronics, and university professors. The volume will aid circuit manufacturers and circuit users alike to relate unstable electrical parameters and characteristics to the physical defects and impurities which caused them. It may also be used as a textbook, provided the reader is familiar with the basics of materials physics and electronics.

Book Heterojunction Solar Cells  a Si c Si

Download or read book Heterojunction Solar Cells a Si c Si written by Thomas Mueller and published by Logos Verlag Berlin GmbH. This book was released on 2009 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main focus of the present work is related to the optimization of heterojunction solar cells. The key roles in obtaining high efficient heterojunction solar cells are mainly the plasma enhanced chemical vapor deposition of very low defect layers, and the sufficient surface passivation of all interfaces. In heterojunction solar cells, the a-Si: H/c-Si hetero-interface is of significant importance, since the hetero-interface characteristics directly affect the junction properties and thus solar cell efficiency. In this work, the deposition and film properties of various hydrogenated amorphous silicon alloys, such as a-SiC: H, a-SiO_x: H, and muc-Si: H (standard a-Si: H is used as reference), are employed. Special attention is paid to (i) the front and back surface passivation of the bulk material by high-quality wide-gap amorphous silicon suboxides (a-SiO_x: H), and (ii) the influence of wide-gap high-quality a-Si- and muc-Si-based alloys for use as emitter and back-surface-

Book New Perspectives on Surface Passivation  Understanding the Si Al2O3 Interface

Download or read book New Perspectives on Surface Passivation Understanding the Si Al2O3 Interface written by Lachlan E. Black and published by Springer. This book was released on 2016-04-15 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book addresses the problem of passivation at the surface of crystalline silicon solar cells. More specifically, it reports on a high-throughput, industrially compatible deposition method for Al2O3, enabling its application to commercial solar cells. One of the main focus is on the analysis of the physics of Al2O3 as a passivating dielectric for silicon surfaces. This is accomplished through a comprehensive study, which moves from the particular, the case of aluminium oxide on silicon, to the general, the physics of surface recombination, and is able to connect theory with practice, highlighting relevant commercial applications.

Book Porous Silicon Surface Passivation and Optical Properties

Download or read book Porous Silicon Surface Passivation and Optical Properties written by Wai-Kit Chang and published by . This book was released on 1996 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Gate Stack  Source Drain  and Channel Engineering for Si Based CMOS 5  New Materials  Processes  and Equipment

Download or read book Advanced Gate Stack Source Drain and Channel Engineering for Si Based CMOS 5 New Materials Processes and Equipment written by V. Narayanan and published by The Electrochemical Society. This book was released on 2009-05 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This issue of ¿ECS Transactions¿ describes processing, materials and equipment for CMOS front-end integration including gate stack, source/drain and channel engineering. Topics include strained Si/SiGe and Si/SiGe on insulator; high-mobility channels including III-V¿s, etc.; nanowires and carbon nanotubes; high-k dielectrics, metal and FUSI gate electrodes; doping/annealing for ultra-shallow junctions; low-resistivity contacts; advanced deposition (e.g. ALD, CVD, MBE), RTP, UV, plasma and laser-assisted processes.

Book Surface Passivation of Silicon  Germanium  and Cu In Ga Se2

Download or read book Surface Passivation of Silicon Germanium and Cu In Ga Se2 written by 徐禎婉 and published by . This book was released on 2010 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electrical Properties of Silicon Surfaces and Interfaces

Download or read book Electrical Properties of Silicon Surfaces and Interfaces written by Tracey Alexandra Burr and published by . This book was released on 1998 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Graphene for Post Moore Silicon Optoelectronics

Download or read book Graphene for Post Moore Silicon Optoelectronics written by Yang Xu and published by John Wiley & Sons. This book was released on 2023-01-18 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene for Post-Moore Silicon Optoelectronics Provides timely coverage of an important research area that is highly relevant to advanced detection and control technology Projecting device performance beyond the scaling limits of Moore’s law requires technologies based on novel materials and device architecture. Due to its excellent electronic, thermal, and optical properties, graphene has emerged as a scalable, low-cost material with enormous integration possibilities for numerous optoelectronic applications. Graphene for Post-Moore Silicon Optoelectronics presents an up-to-date overview of the fundamentals, applications, challenges, and opportunities of integrating graphene and other 2D materials with silicon (Si) technologies. With an emphasis on graphene-silicon (Gr/Si) integrated devices in optoelectronics, this valuable resource also addresses emerging applications such as optoelectronic synaptic devices, optical modulators, and infrared image sensors. The book opens with an introduction to graphene for silicon optoelectronics, followed by chapters describing the growth, transfer, and physics of graphene/silicon junctions. Subsequent chapters each focus on a particular Gr/Si application, including high-performance photodetectors, solar energy harvesting devices, and hybrid waveguide devices. The book concludes by offering perspectives on the future challenges and prospects of Gr/Si optoelectronics, including the emergence of wafer-scale systems and neuromorphic optoelectronics. Illustrates the benefits of graphene-based electronics and hybrid device architectures that incorporate existing Si technology Covers all essential aspects of Gr/Si devices, including material synthesis, device fabrication, system integration, and related physics Summarizes current progress and future challenges of wafer-scale 2D-Si integrated optoelectronic devices Explores a wide range of Gr/Si devices, such as synaptic phototransistors, hybrid waveguide modulators, and graphene thermopile image sensors Graphene for Post-Moore Silicon Optoelectronics is essential reading for materials scientists, electronics engineers, and chemists in both academia and industry working with the next generation of Gr/Si devices.

Book Silicon Heterojunction Solar Cells

Download or read book Silicon Heterojunction Solar Cells written by W.R. Fahrner and published by Trans Tech Publications Ltd. This book was released on 2006-08-15 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.

Book Silicon Based Thin Film Solar Cells

Download or read book Silicon Based Thin Film Solar Cells written by Roberto Murri and published by Bentham Science Publishers. This book was released on 2013-03-20 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Based Thin Film Solar Cells explains concepts related to technologies for silicon (Si) based photovoltaic applications. Topics in this book focus on ‘new concept’ solar cells. These kinds of cells can make photovoltaic power production an economically viable option in comparison to the bulk crystalline semiconductor technology industry. A transition from bulk crystalline Si solar cells toward thin-film technologies reduces usage of active material and introduces new concepts based on nanotechnologies. Despite its importance, the scientific development and understanding of new solar cells is not very advanced, and educational resources for specialized engineers and scientists are required. This textbook presents the fundamental scientific aspects of Si thin films growth technology, together with a clear understanding of the properties of the material and how this is employed in new generation photovoltaic solar cells. The textbook is a valuable resource for graduate students working on their theses, young researchers and all people approaching problems and fundamental aspects of advanced photovoltaic conversion.

Book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells

Download or read book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells written by Wilfried G. J. H. M. van Sark and published by Springer Science & Business Media. This book was released on 2011-11-16 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today’s solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1991 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Porous Silicon  From Formation to Applications  Optoelectronics  Microelectronics  and Energy Technology Applications  Volume Three

Download or read book Porous Silicon From Formation to Applications Optoelectronics Microelectronics and Energy Technology Applications Volume Three written by Ghenadii Korotcenkov and published by CRC Press. This book was released on 2016-01-06 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Porous silicon is rapidly attracting increasing interest from various fields, including optoelectronics, microelectronics, photonics, medicine, sensor and energy technologies, chemistry, and biosensing. This nanostructured and biodegradable material has a range of unique properties that make it ideal for many applications. This book, the third of a

Book Aluminum Oxide for the Surface Passivation of High Efficiency Silicon Solar Cells

Download or read book Aluminum Oxide for the Surface Passivation of High Efficiency Silicon Solar Cells written by Armin Richter and published by . This book was released on 2015-02-23 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: