EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Supplementary Information on K Basin Sludges

Download or read book Supplementary Information on K Basin Sludges written by and published by . This book was released on 1999 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period.

Book Preparing T Plant for Storing Sludge from the K Basins

Download or read book Preparing T Plant for Storing Sludge from the K Basins written by W. S. Ayers and published by . This book was released on 2003 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a number of years, the spent nuclear fuel (SNF) from the N Reactor has been stored underwater in the basins at the 100 K Area complex of the Hanford Site (K Basins). Fluor Hanford is managing a significant effort to remove the fuel from the K Basins and place it in dry storage. Removing accumulated sludges from the basins is also a part of this activity. Over time, corrosion by-products from degrading fuel rods, storage-rack rust, concrete fragments from pool walls, and environmental particulates have led to the accumulation of sludge on the floors and in the pits of the K Basins. Handling and cleaning the SNF as it is removed from the K Basins will generate additional sludge. Due to the age and condition of the basins, there is a potential for sludge and basin water to leak into the environment. This potential has created the impetus for removing the sludge, in addition to the fuel, from the basins as quickly as possible and placing it in a safe and secure storage configuration pending disposition.

Book K East Basin Sludge Volume Estimates for Integrated Water Treatment System

Download or read book K East Basin Sludge Volume Estimates for Integrated Water Treatment System written by and published by . This book was released on 1998 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: This document provides estimates of the volume of sludge expected from Integrated Process Strategy (IPS) processing of the fuel elements and in the fuel storage canisters in K East Basin. The original estimates were based on visual observations of fuel element condition in the basin and laboratory measurements of canister sludge density. Revision 1 revised the volume estimates of sludge from processing of the fuel elements based on additional data from evaluations of material from the KE Basin fuel subsurface examinations. A nominal Working Estimate and an upper level Working Bound is developed for the canister sludge and the fuel wash sludge components in the KE Basin.

Book K West Basin Sludge Volume Estimates for Integrated Water Treatment System

Download or read book K West Basin Sludge Volume Estimates for Integrated Water Treatment System written by and published by . This book was released on 1998 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: This document provides estimates of the volume of sludge (1) expected from Integrated Process Strategy (IPS) processing of the fuel elements and (2) in the fuel storage canisters in K West Basin. The original estimates were based on visual observations of fuel element condition in the basin and laboratory measurements of KE canister sludge density. Revision 1 revised the volume estimates of sludge based on additional data from evaluations of material from the KW Basin fuel subsurface examinations and KW canister sludge characterization data. A nominal Working Estimate and an upper level Working Bound is developed for the canister sludge and the fuel wash sludge components in the KW Basin.

Book K Basin Sludge Dissolution Engineering Study

Download or read book K Basin Sludge Dissolution Engineering Study written by and published by . This book was released on 1998 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel reprocessing plants in Europe, Japan, and the USA. Ash and sludge containing uranium compounds also have been dissolved in reprocessing or plutonium scrap recovery plants, but only a limited amount of information is available on how the ferric oxyhydroxide, aluminum compounds and silicates in the sand will behave during nitric acid dissolution. Laboratory work with simulants and hot cell work with actual K Basin sludge is in progress to obtain data in these areas.

Book Development of K Basin High strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

Download or read book Development of K Basin High strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and potential for erosion, it is important to compare the measured shear strength to penetrometer measurements and to develop a correlation (or correlations) between UCS measured by a pocket penetrometer and direct shear strength measurements for various homogeneous and heterogeneous simulants. This study developed 11 homogeneous simulants, whose shear strengths vary from 4 to 170 kPa. With these simulants, we developed correlations between UCS measured by a Geotest E-280 pocket penetrometer and shear strength values measured by a Geonor H-60 hand-held vane tester and a more sophisticated bench-top unit, the Haake M5 rheometer. This was achieved with side-by-side measurements of the shear strength and UCS of the homogeneous simulants. The homogeneous simulants developed under this study consist of kaolin clay, plaster of Paris, and amorphous alumina CP-5 with water. The simulants also include modeling clay. The shear strength of most of these simulants is sensitive to various factors, including the simulant size, the intensity of mixing, and the curing time, even with given concentrations of simulant components. Table S.1 summarizes these 11 simulants and their shear strengths.

Book Summary Status of K Basins Sludge Characterization

Download or read book Summary Status of K Basins Sludge Characterization written by and published by . This book was released on 1995 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: A number of activities are underway as part of the Spent Nuclear Fuels Project (SNFP) related to the processing and disposing of sludge in the 105-K Basins (K Basins). Efforts to rigorously define data requirements for these activities are being made using the Data Quality Objectives (DQO) process. Summaries of current sludge characterization data are required to both help support this DQO process and to allow continued progress with on-going engineering activities (e.g., evaluations of disposal alternatives). This document provides the status of K Basins sludge characterization data currently available to the Nuclear Fuel Evaluations group. This group is tasked by the SNFP to help develop and maintain the characterization baseline for the K Basins. The specific objectives of this document are to: (1) provide a current summary (and set of references) of sludge characterization data for use by SNFP initiatives, to avoid unnecessary duplication of effort and to support on-going initiatives; (2) submit these data to an open forum for review and comment, and identify additional sources of significant data that may be available; (3) provide a summary of current data to use as part of the basis to develop requirements for additional sludge characterization data through the DQO process; (4) provide an overview of the intended activities that will be used to develop and maintain the sludge characterization baseline.

Book Characterization of Compaction and Dryout Properties of KE Basin Sludge During Long Term Storage

Download or read book Characterization of Compaction and Dryout Properties of KE Basin Sludge During Long Term Storage written by and published by . This book was released on 2005 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The long-term behavior of Hanford Site K Basin sludge with respect to loss of supernatant water and solids compaction is important in designing sludge storage and handling systems. This report describes the results of laboratory tests performed to understand and predict K Basin sludge drying and compaction rates under extended (28-month) (almost equal to)34 C hot cell storage. Tests were conducted with six K Basin sludge materials, a control sample of simulated K Basin sludge, and a control sample containing only K Basin supernatant liquid. All samples were held in graduated cylinders fitted with threaded plastic caps. Quantitative data were gathered on how the mass and volume of K Basin sludge, and its associated supernatant liquid, changed with respect to storage time. The tests showed that the K Basin sludge samples lost water unpredictably, depending on cap seal tightness, with projected dryout times for a 1-cm cover water depth ranging from 5 to 216 months. Though the ambient radiation field ((almost equal to)5 Rad/hour) likely contributed to cap seal degradation, water evaporation rates were found to be independent of the contained material (water vs. sludge; radioactive vs. non-radioactive sludge). Although water was lost at variable rates from sludge samples during storage in the hot cell (and, presumably, in long-term containerized storage), the sludge itself had no intrinsic propensity to enhance or diminish the rate of water evaporation compared with that exhibited by water stored in the same environment. Most of the compaction of the six KE Basin sludges and the simulated sludge occurred in the first week. Subsequent compaction to 28-months time provided little additional increase in settled sludge density. Agitating the settled sludge likewise had little to no effect on the density. However, one tested sludge contained unreacted uranium metal that began to generate corrosion product hydrogen gas after 78 days of settling and strongly altered the apparent sludge density. T he lengthy induction time shows again that uranium metal-bearing sludge may lie quiescent for long periods, even at comparatively warm temperatures, before initiating gas generation. When the testing was completed, the sludge samples were removed from the graduated cylinders. Most sludge re-suspended readily but a canister sludge sample that had previously been allowed to dry out during storage self-cemented into a hard-cake monolith and could not be re-suspended. Settled sludge density and the concentrations of 154Eu, 241Am, and the plutonium isotopes were found to follow the dry basis uranium concentration in the sludge solids. These findings amplify observations made in prior characterization studies that showed that sludge density and radiolytic, fissile material, and TRU (primarily 241Am and 238,239,240Pu) concentrations are proportional to uranium concentration. The sludge pH, found to decrease from (almost equal to)8 to (almost equal to)5 with a dry basis uranium concentration increase from (almost equal to)2.5 to 82 wt%, provides data useful in designing sludge storage and process equipment.

Book K Basin Spent Fuel Sludge Treatment Alternatives Study  Volume 1  Regulatory Options

Download or read book K Basin Spent Fuel Sludge Treatment Alternatives Study Volume 1 Regulatory Options written by and published by . This book was released on 1995 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE's commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. Volume 1 of this two-volume report describes the regulatory options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path.

Book K Basin Sludge Retrieval Flocculant and Material Compatibility Evaluation

Download or read book K Basin Sludge Retrieval Flocculant and Material Compatibility Evaluation written by and published by . This book was released on 1995 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book K Basin Sludge Treatment Process Description

Download or read book K Basin Sludge Treatment Process Description written by and published by . This book was released on 1998 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998).

Book Characterization of Hanford N Reactor Spent Fuel and K Basin Sludges

Download or read book Characterization of Hanford N Reactor Spent Fuel and K Basin Sludges written by and published by . This book was released on 1996 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Westinghouse Hanford Company Recommended Strategy for K Basin Sludge Disposition

Download or read book Westinghouse Hanford Company Recommended Strategy for K Basin Sludge Disposition written by and published by . This book was released on 1995 with total page 41 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this document is to present the recommended strategy for removal of sludges from the K Basins. This document ties sludge removal activities to the plan for the K Basin spent nuclear fuel (SNF) described in WHC-EP-0830, Hanford Spent Nuclear Fuel Project Recommended Path Forward and is consistent with follow-on direction provided in February 1995. Solutions and processes for resolving sludge removal technical and management issues to meet accelerated K Basin deactivation objectives are described. The following outlines the major elements of the recommendation: (1) manage all sludges as SNF while in the K Basins; (2) once loose sludges are collected and removed from the facilities, manage them as radioactive or mixed waste consistent with the upcoming characterization results, the preferred sludge path forward alternative sends sludges to the Tank Waste Remediation System (TWRS) and/or the Hanford Solid Waste Disposal as appropriate; (3) continue to manage sludge within the fuel canisters at the time they are loaded into the multi-canister overpacks as SNF.

Book K Basin Spent Fuel Sludge Treatment Alternatives Study  Volume 2  Technical Options

Download or read book K Basin Spent Fuel Sludge Treatment Alternatives Study Volume 2 Technical Options written by and published by . This book was released on 1995 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE's commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. This report, Volume 2 of two volumes, describes the technical options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path.

Book Assessment of Jet Erosion for Potential Post Retrieval K Basin Settled Sludge

Download or read book Assessment of Jet Erosion for Potential Post Retrieval K Basin Settled Sludge written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Packaged K-Basin sludge will be transported to the T Plant on the Hanford Site where it will be interim stored. The sludge will be retrieved from the storage containers and processed for disposal. A sample of high uranium content canister sludge, designated 96-13, "self-cemented" during laboratory storage. This sample was uncharacteristically strong compared to expected K-Basin material. The purpose for this work is to evaluate the potential retrieval of such sludge after storage at the T Plant via jet erosion. The specific objectives of this report are to determine the modes of erosion and the methods used to measure/assess the erodibility parameters of sludge and identify those parameters applicable to jet erosion. The erodibility parameters of sample 96-13 are characterized to the extent possible. These objectives have been met based on literature review, past experience at Pacific Northwest National Laboratory, and observation of sample 96-13 video during hot-cell activities.