EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Sublinear Algorithms for Big Data Applications

Download or read book Sublinear Algorithms for Big Data Applications written by Dan Wang and published by Springer. This book was released on 2015-07-16 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: The brief focuses on applying sublinear algorithms to manage critical big data challenges. The text offers an essential introduction to sublinear algorithms, explaining why they are vital to large scale data systems. It also demonstrates how to apply sublinear algorithms to three familiar big data applications: wireless sensor networks, big data processing in Map Reduce and smart grids. These applications present common experiences, bridging the theoretical advances of sublinear algorithms and the application domain. Sublinear Algorithms for Big Data Applications is suitable for researchers, engineers and graduate students in the computer science, communications and signal processing communities.

Book Signal Processing and Networking for Big Data Applications

Download or read book Signal Processing and Networking for Big Data Applications written by Zhu Han and published by Cambridge University Press. This book was released on 2017-04-27 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique text helps make sense of big data in engineering applications using tools and techniques from signal processing. It presents fundamental signal processing theories and software implementations, reviews current research trends and challenges, and describes the techniques used for analysis, design and optimization. Readers will learn about key theoretical issues such as data modelling and representation, scalable and low-complexity information processing and optimization, tensor and sublinear algorithms, and deep learning and software architecture, and their application to a wide range of engineering scenarios. Applications discussed in detail include wireless networking, smart grid systems, and sensor networks and cloud computing. This is the ideal text for researchers and practising engineers wanting to solve practical problems involving large amounts of data, and for students looking to grasp the fundamentals of big data analytics.

Book Software Architecture for Big Data and the Cloud

Download or read book Software Architecture for Big Data and the Cloud written by Ivan Mistrik and published by Morgan Kaufmann. This book was released on 2017-06-12 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Software Architecture for Big Data and the Cloud is designed to be a single resource that brings together research on how software architectures can solve the challenges imposed by building big data software systems. The challenges of big data on the software architecture can relate to scale, security, integrity, performance, concurrency, parallelism, and dependability, amongst others. Big data handling requires rethinking architectural solutions to meet functional and non-functional requirements related to volume, variety and velocity. The book's editors have varied and complementary backgrounds in requirements and architecture, specifically in software architectures for cloud and big data, as well as expertise in software engineering for cloud and big data. This book brings together work across different disciplines in software engineering, including work expanded from conference tracks and workshops led by the editors. - Discusses systematic and disciplined approaches to building software architectures for cloud and big data with state-of-the-art methods and techniques - Presents case studies involving enterprise, business, and government service deployment of big data applications - Shares guidance on theory, frameworks, methodologies, and architecture for cloud and big data

Book Signal Processing and Networking for Big Data Applications

Download or read book Signal Processing and Networking for Big Data Applications written by Zhu Han and published by Cambridge University Press. This book was released on 2017-04-27 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique text helps make sense of big data using signal processing techniques, in applications including machine learning, networking, and energy systems.

Book Introduction to Property Testing

Download or read book Introduction to Property Testing written by Oded Goldreich and published by Cambridge University Press. This book was released on 2017-11-23 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extensive and authoritative introduction to property testing, the study of super-fast algorithms for the structural analysis of large quantities of data in order to determine global properties. This book can be used both as a reference book and a textbook, and includes numerous exercises.

Book Algorithms For Big Data

Download or read book Algorithms For Big Data written by Moran Feldman and published by World Scientific. This book was released on 2020-07-13 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume is an introduction for computer scientists, including a formal study of theoretical algorithms for Big Data applications, which allows them to work on such algorithms in the future. It also serves as a useful reference guide for the general computer science population, providing a comprehensive overview of the fascinating world of such algorithms.To achieve these goals, the algorithmic results presented have been carefully chosen so that they demonstrate the important techniques and tools used in Big Data algorithms, and yet do not require tedious calculations or a very deep mathematical background.

Book Topological and Statistical Methods for Complex Data

Download or read book Topological and Statistical Methods for Complex Data written by Janine Bennett and published by Springer. This book was released on 2014-11-19 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains papers presented at the Workshop on the Analysis of Large-scale, High-Dimensional, and Multi-Variate Data Using Topology and Statistics, held in Le Barp, France, June 2013. It features the work of some of the most prominent and recognized leaders in the field who examine challenges as well as detail solutions to the analysis of extreme scale data. The book presents new methods that leverage the mutual strengths of both topological and statistical techniques to support the management, analysis, and visualization of complex data. It covers both theory and application and provides readers with an overview of important key concepts and the latest research trends. Coverage in the book includes multi-variate and/or high-dimensional analysis techniques, feature-based statistical methods, combinatorial algorithms, scalable statistics algorithms, scalar and vector field topology, and multi-scale representations. In addition, the book details algorithms that are broadly applicable and can be used by application scientists to glean insight from a wide range of complex data sets.

Book Understanding Machine Learning

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Book Data Streams

    Book Details:
  • Author : S. Muthukrishnan
  • Publisher : Now Publishers Inc
  • Release : 2005
  • ISBN : 193301914X
  • Pages : 136 pages

Download or read book Data Streams written by S. Muthukrishnan and published by Now Publishers Inc. This book was released on 2005 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudo-random computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic analysis, mining text message streams and processing massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges.

Book Sublinear Computation Paradigm

Download or read book Sublinear Computation Paradigm written by Naoki Katoh and published by Springer Nature. This book was released on 2021-10-19 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book gives an overview of cutting-edge work on a new paradigm called the “sublinear computation paradigm,” which was proposed in the large multiyear academic research project “Foundations of Innovative Algorithms for Big Data.” That project ran from October 2014 to March 2020, in Japan. To handle the unprecedented explosion of big data sets in research, industry, and other areas of society, there is an urgent need to develop novel methods and approaches for big data analysis. To meet this need, innovative changes in algorithm theory for big data are being pursued. For example, polynomial-time algorithms have thus far been regarded as “fast,” but if a quadratic-time algorithm is applied to a petabyte-scale or larger big data set, problems are encountered in terms of computational resources or running time. To deal with this critical computational and algorithmic bottleneck, linear, sublinear, and constant time algorithms are required. The sublinear computation paradigm is proposed here in order to support innovation in the big data era. A foundation of innovative algorithms has been created by developing computational procedures, data structures, and modelling techniques for big data. The project is organized into three teams that focus on sublinear algorithms, sublinear data structures, and sublinear modelling. The work has provided high-level academic research results of strong computational and algorithmic interest, which are presented in this book. The book consists of five parts: Part I, which consists of a single chapter on the concept of the sublinear computation paradigm; Parts II, III, and IV review results on sublinear algorithms, sublinear data structures, and sublinear modelling, respectively; Part V presents application results. The information presented here will inspire the researchers who work in the field of modern algorithms.

Book Advanced Algorithms and Data Structures

Download or read book Advanced Algorithms and Data Structures written by Marcello La Rocca and published by Simon and Schuster. This book was released on 2021-08-10 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. Summary As a software engineer, you’ll encounter countless programming challenges that initially seem confusing, difficult, or even impossible. Don’t despair! Many of these “new” problems already have well-established solutions. Advanced Algorithms and Data Structures teaches you powerful approaches to a wide range of tricky coding challenges that you can adapt and apply to your own applications. Providing a balanced blend of classic, advanced, and new algorithms, this practical guide upgrades your programming toolbox with new perspectives and hands-on techniques. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Can you improve the speed and efficiency of your applications without investing in new hardware? Well, yes, you can: Innovations in algorithms and data structures have led to huge advances in application performance. Pick up this book to discover a collection of advanced algorithms that will make you a more effective developer. About the book Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. You’ll discover cutting-edge approaches to a variety of tricky scenarios. You’ll even learn to design your own data structures for projects that require a custom solution. What's inside Build on basic data structures you already know Profile your algorithms to speed up application Store and query strings efficiently Distribute clustering algorithms with MapReduce Solve logistics problems using graphs and optimization algorithms About the reader For intermediate programmers. About the author Marcello La Rocca is a research scientist and a full-stack engineer. His focus is on optimization algorithms, genetic algorithms, machine learning, and quantum computing. Table of Contents 1 Introducing data structures PART 1 IMPROVING OVER BASIC DATA STRUCTURES 2 Improving priority queues: d-way heaps 3 Treaps: Using randomization to balance binary search trees 4 Bloom filters: Reducing the memory for tracking content 5 Disjoint sets: Sub-linear time processing 6 Trie, radix trie: Efficient string search 7 Use case: LRU cache PART 2 MULTIDEMENSIONAL QUERIES 8 Nearest neighbors search 9 K-d trees: Multidimensional data indexing 10 Similarity Search Trees: Approximate nearest neighbors search for image retrieval 11 Applications of nearest neighbor search 12 Clustering 13 Parallel clustering: MapReduce and canopy clustering PART 3 PLANAR GRAPHS AND MINIMUM CROSSING NUMBER 14 An introduction to graphs: Finding paths of minimum distance 15 Graph embeddings and planarity: Drawing graphs with minimal edge intersections 16 Gradient descent: Optimization problems (not just) on graphs 17 Simulated annealing: Optimization beyond local minima 18 Genetic algorithms: Biologically inspired, fast-converging optimization

Book Innovative Techniques and Applications of Entity Resolution

Download or read book Innovative Techniques and Applications of Entity Resolution written by Wang, Hongzhi and published by IGI Global. This book was released on 2014-02-28 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Entity resolution is an essential tool in processing and analyzing data in order to draw precise conclusions from the information being presented. Further research in entity resolution is necessary to help promote information quality and improved data reporting in multidisciplinary fields requiring accurate data representation. Innovative Techniques and Applications of Entity Resolution draws upon interdisciplinary research on tools, techniques, and applications of entity resolution. This research work provides a detailed analysis of entity resolution applied to various types of data as well as appropriate techniques and applications and is appropriately designed for students, researchers, information professionals, and system developers.

Book Property Testing

    Book Details:
  • Author : Oded Goldreich
  • Publisher : Springer Science & Business Media
  • Release : 2010-10-08
  • ISBN : 3642163661
  • Pages : 370 pages

Download or read book Property Testing written by Oded Goldreich and published by Springer Science & Business Media. This book was released on 2010-10-08 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Property Testing is the study of super-fast algorithms for approximate decision making. This volume features work presented at a mini-workshop on property testing that took place January 2010 at the Institute for Computer Science, Tsinghua University, China.

Book Probabilistic Data Structures and Algorithms for Big Data Applications

Download or read book Probabilistic Data Structures and Algorithms for Big Data Applications written by Andrii Gakhov and published by BoD – Books on Demand. This book was released on 2022-08-05 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: A technical book about popular space-efficient data structures and fast algorithms that are extremely useful in modern Big Data applications. The purpose of this book is to introduce technology practitioners, including software architects and developers, as well as technology decision makers to probabilistic data structures and algorithms. Reading this book, you will get a theoretical and practical understanding of probabilistic data structures and learn about their common uses.

Book Frontiers in Massive Data Analysis

Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.

Book Algorithms and Data Structures for External Memory

Download or read book Algorithms and Data Structures for External Memory written by Jeffrey Scott Vitter and published by Now Publishers Inc. This book was released on 2008 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes several useful paradigms for the design and implementation of efficient external memory (EM) algorithms and data structures. The problem domains considered include sorting, permuting, FFT, scientific computing, computational geometry, graphs, databases, geographic information systems, and text and string processing.

Book Beyond the Worst Case Analysis of Algorithms

Download or read book Beyond the Worst Case Analysis of Algorithms written by Tim Roughgarden and published by Cambridge University Press. This book was released on 2021-01-14 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces exciting new methods for assessing algorithms for problems ranging from clustering to linear programming to neural networks.