EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Study of Turbulence Modulation by Finite size Solid Particles with the Lattice Boltzmann Method

Download or read book Study of Turbulence Modulation by Finite size Solid Particles with the Lattice Boltzmann Method written by Cheng Peng and published by . This book was released on 2018 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent flows laden with finite-size solid particles are found in a variety of natural and engineering processes. However, the overall understanding of how the flow properties, such as turbulent intensity and flow drag, are modified by the addition of the particles is still limited. So far, the only rigorous approach to investigate the modulation mechanisms at the particle scale is to numerically solve the disturbance flow around each particle, known as the interface-resolved simulations (IRS). However, the application of IRS in the turbulent particle-laden flow is particularly challenging due to the requirements of resolving all the length and time scales in the turbulent flow, as well as the need to realize the no-slip boundary condition on the moving particle surfaces. ☐ In recent years, the lattice Boltzmann method (LBM) has emerged as an efficient and accurate numerical approach for computational fluid dynamics. Compared to the conventional approaches of directly solving the Navier-Stokes equations, LBM is simple to code, easy to parallelize, and flexible in treating boundary conditions. In particular, the no-slip boundary treatment based on bounce-back scheme and mesoscopic momentum exchange in LBM take full advantage of the gas kinetic description. However, the realization of these treatments in particle-laden turbulent flow simulations is still rare. So far, the majority of the particle-laden turbulent flow simulations relies on the smoothed-boundary treatments, such as the immersed boundary methods, which tends to induce artificial dissipation. In this dissertation, LBM with a sharp-interface treatment is developed to investigate turbulence modulation by finite-size solid particles. ☐ After a thorough validation, the method is applied to the simulations of a turbulent channel flow laden with both fixed and moving particles. The interactions between the dispersed particles and carrier turbulent flows, especially the modulation induced by the particles on the turbulence intensity and its parameter dependence are examined. The addition of particles is found to result in a more homogeneous distribution of turbulent kinetic energy (TKE) in the wall normal direction and a more isotropic TKE distribution among different spatial directions, comparing to the single-phase turbulent channel flow. To gain further insight, the budget equations of both the total TKE and component-wise TKE in the particle-laden turbulent flows are derived and analyzed using the simulation data. The budget analysis of the total TKE shows that the production rate of TKE from the mean flow is modified to become more uniform in the wall-normal direction by the presence of particles, which is responsible for the more homogeneous distribution of TKE. Specifically, in the buffer region where the TKE source is maximized in the single-phase flow, the TKE source due to the mean shear is reduced since both the mean flow velocity gradient and the Reynolds stress are reduced by the presence of particles. This reduction is found to be related to the particle inertia, where particles with larger inertia result in greater reduction of the TKE source. On the other hand, particles pump energy to turbulent fluctuations by doing work directly (moving particles) or inducing disturbances to the mean flow (fixed particles), converting more mechanical energy from the mean flow to the turbulent motion. The strength of this extra TKE source is related to the dynamics of the wake developed behind particles and therefore is particle-Reynolds-number dependent. The relative strength of the above two mechanisms determines whether the turbulence intensity of a turbulent channel flow is augmented or attenuated by the presence of particles. The budget analysis of component-wise TKE reveals that the more isotropic distribution of TKE among different spatial directions results from the enhanced inter-components transfer of TKE. This enhancement is found to originate from the spherical shape of the particles and particle rotation. ☐ In summary, the improved LBM simulation method based on the sharp-interface treatment provides a better alternative for particle-laden turbulent flow simulations than the commonly used smoothed-interface treatments. The physical results from this dissertation research advance our understanding of flow modulation induced by finite-size solid particles in turbulent flows, particularly in wall-bounded turbulent flows.

Book Solid particles Deposition Through a Turbulent Impinging Jet Using Lattice Boltzmann Method

Download or read book Solid particles Deposition Through a Turbulent Impinging Jet Using Lattice Boltzmann Method written by Ali Abdulkadhim and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid particle distribution on an impingement surface has been simulated utilizing a graphical processing unit (GPU). An in-house computational fluid dynamics (CFD) code has been developed to investigate a 3D turbulent impinging jet using the lattice Boltzmann method (LBM) in conjunction with large eddy simulation (LES) and the multiple relaxation time (MRT) models. This work proposed an improvement in the LBM-cellular automata (LBM-CA) probabilistic method. In the current model, the fluid flow utilizes the D3Q19 LBM lattice model, while the particles movement employs the D3Q27 one. The particle numbers are defined at the same regular LBM (fluid) nodes, and the transport of particles from one node to its neighbouring nodes are determined in accordance with the particle bulk density and velocity by considering all the external forces. The previous CA models distribute particles at each time step without considering the local particles number and velocity at each node. The present model overcomes the deficiencies of the previous LBM-CA models and, therefore, can better capture the dynamic interaction between particles and the surrounding turbulent flow field. Despite increasing popularity of the LBM-MRT model in simulating complex multiphase fluid flows, this approach is still expensive in term of memory size and computational time required to perform 3D simulations. To improve the throughput of simulations, a single GeForce GTX TITAN X GPU is used in the present work. The CUDA parallel programming platform and the CuRAND library are utilized to form an efficient LBM-MRT-CA algorithm. The LBM-MRT fluid (i.e. no particles) model results were compared with two benchmark test cases ones. The first case is a turbulent free square jet, and the second one is a circular turbulent impinging jet for L/D=2 at Reynolds number equals to 25,000, where L is the nozzle-to-surface distance and D is the jet diameter. The LBM-CA simulation methodology was first validated against a benchmark test case involving particle deposition on a square cylinder confined in a duct. The flow was unsteady and laminar at Re=200 (Re is the Reynolds number), and simulations were conducted for different Stokes numbers. The GPU code was then used to simulate the particle transport and deposition in a turbulent impinging jet at Re=10,000. The effect of changing Stokes number on the particle deposition profile was studied at different L/D ratios, i.e. L/D=2, 4, and 6. The current model was finally used to simulate the particle impaction pattern from a circular jet for L/D=0.5, where the effect of changing Stokes and Reynolds numbers on the particle transport and deposition was examined. The present LBM-CA solutions agree well with other results available in the open literature. For comparative studies, another in-house serial CPU code was also developed, coupling LBM with the classical Lagrangian particle dispersion model. Agreement between results obtained with LBM-CA and LBM-Lagrangian models and the experimental data for the impinging jet case of L/D=0.5 is generally good, and the present LBM-CA approach on GPU achieves a speedup ratio of about 150 against the serial code running on a single CPU. Another new model was proposed to incorporate the solid particle phase effect (i.e. two-way coupling) on the fluid flow. The LMB-Lagrangian approach was used in this model to track solid particles in the computational domain. The solid particle phase was considered as a porous medium moving in the computational domain. The impact of the porous medium (i.e. the solid particle phase) on the fluid flow characteristics (e.g. fluid velocity) is a function of the particle phase volume fraction and velocity in the LBM. Particle-particle collision (i.e. four-way coupling) was also considered in this model by utilizing the discrete element method (DEM). This approach can numerically capture the multi-particle collision behaviours in dense particle suspension problems. This model data were compared with the numerical study ones for a single bubble injected in a fluidized bed, and the results of the bubble diameters at different injection velocity were in good agreement.

Book Non Linear Lattice

    Book Details:
  • Author : Ignazio Licata and Sauro Succi
  • Publisher : MDPI
  • Release : 2018-07-17
  • ISBN : 3038423068
  • Pages : 291 pages

Download or read book Non Linear Lattice written by Ignazio Licata and Sauro Succi and published by MDPI. This book was released on 2018-07-17 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Non-Linear Lattice" that was published in Entropy

Book Taylor Length scale Size Particles in Isotropic Turbulence

Download or read book Taylor Length scale Size Particles in Isotropic Turbulence written by Francesco Lucci and published by . This book was released on 2011 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present study investigates the two-way coupling effects of finite-size solid spherical particles on decaying isotropic turbulence using an immersed boundary method. study of the interactions between finite-size particles andisotropic turbulence. The conventional point particle assumption is valid only in the case of particles with a diameter, dp, much smaller than the Kolmogorov length scale, %eta. In a simulation with particles of diameter dp/sub” %eta the flow around each particle needs to be resolved. In this study, we use a method similar to that of Uhlmann(2005) that adapts the Immersed Boundary(IB) Method developed by Peskin to simulate the flow around suspended spherical solid particles. The main idea of the method is to distribute a number of Lagrangian points uniformly over the surface of the particle. A force is applied at each Lagrangian point to represent the momentum exchange between the particle and the surrounding fluid. An analytic three-point delta function is used to distribute the force to the Eulerian grid points saddling the spherical surface to satisfy the no-slip condition at each Lagrangian point. Decaying turbulence is simulated in a periodic box with a uniform mesh of up to (512)sup3/sup grid points and an initial microscale Reynolds number of up to Resub%lambda 0= 110. We compare the single phase flow (SPF) with particle-laden flows with particles of different diameters. The density of the particle varies from 2.56 to 10 times that of the fluid. The effects of the particles on the temporal development of turbulence kinetic energy E(t), its dissipation rate e(t), its two-way coupling rate of change Psi_p(t) and frequency spectra E(%omega) are discussed. In this study, in contrast to particles with d_p %eta, particles with d_p %eta always increase the dissipation rate of turbulence kinetic energy, e(t). In addition, \Psi_p(t) is always positive, whereas it can be positive or negative for particles with d_p

Book Collective Dynamics of Particles

Download or read book Collective Dynamics of Particles written by Cristian Marchioli and published by Springer. This book was released on 2017-02-21 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such methods to dispersed multiphase flows.

Book The dynamics of finite size settling particles

Download or read book The dynamics of finite size settling particles written by Doychev, Todor and published by KIT Scientific Publishing. This book was released on 2015-01-27 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contributes to the fundamental understanding of the physical mechanisms that take place in pseudo turbulent particulate flows. In the present work we have considered the sedimentation of large numbers of spherical rigid particles in an initially quiescent flow field. We have performed direct numerical simulations employing an immersed boundary method for the representation of the fluid-solid interface. The results evidence that depending on the particle settling regime (i.e. Galileo number and particle-to-fluid density ratio) the particles may exhibit strong inhomogeneous spatial distribution. It is found that the particles are preferentially located in regions with downward fluid motion. The particles inside clusters experience larger settling velocities than the average. The flow in all flow cases is observed to exhibit characteristic features of pseudo-turbulence. The particle-induced flow field is further found to be highly anisotropic with dominant vertical components. The results indicate that, in the present flow configurations, the collective and mobility effects play significant role for the particle and fluid motion.

Book Small Scale Modeling and Simulation of Incompressible Turbulent Multi Phase Flow

Download or read book Small Scale Modeling and Simulation of Incompressible Turbulent Multi Phase Flow written by Stéphane Vincent and published by Springer Nature. This book was released on 2022-10-06 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides basic and recent research insights concerning the small scale modeling and simulation of turbulent multi-phase flows. By small scale, it has to be understood that the grid size for the simulation is smaller than most of the physical time and space scales of the problem. Small scale modeling of multi-phase flows is a very popular topic since the capabilities of massively parallel computers allows to go deeper into the comprehension and characterization of realistic flow configurations and at the same time, many environmental and industrial applications are concerned such as nuclear industry, material processing, chemical reactors, engine design, ocean dynamics, pollution and erosion in rivers or on beaches. The work proposes a complete and exhaustive presentation of models and numerical methods devoted to small scale simulation of incompressible turbulent multi-phase flows from specialists of the research community. Attention has also been paid to promote illustrations and applications, multi-phase flows and collaborations with industry. The idea is also to bring together developers and users of different numerical approaches and codes to share their experience in the development and validation of the algorithms and discuss the difficulties and limitations of the different methods and their pros and cons. The focus will be mainly on fixed-grid methods, however adaptive grids will be also partly broached, with the aim to compare and validate the different approaches and models.

Book Turbulence Structure and Modulation

Download or read book Turbulence Structure and Modulation written by Alfredo Soldati and published by Springer Science & Business Media. This book was released on 2001-07-19 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Controlling turbulence is an important issue for a number of technological applications. Several methods to modulate turbulence are currently being investigated. All of them are based on the introduction of some sort of perturbation into the flow field which affect turbulence coherent structures responsible for turbulence transfer mechanisms. The scope of the book is to describe several aspects of turbulence structure and modulation and to explain and discuss the most promising techniques in detail.

Book Modeling Particle Suspensions Using Lattice Boltzmann Method

Download or read book Modeling Particle Suspensions Using Lattice Boltzmann Method written by Wenbin Mao and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Particle suspensions are common both in nature and in various technological applications. The complex nature of hydrodynamic interactions between particles and the solvent makes such analysis difficult that often requires numerical modeling to understand the behavior of particle suspensions. In this dissertation, we employ a hybrid computational model that integrates a lattice spring model for solid mechanics and a lattice Boltzmann model for fluid dynamics. We use this model to study several practical problems in which the dynamics of spherical and spheroidal particles and deformable capsules in dilute suspensions plays an important role. The results of our studies yield new information regarding the dynamics of solid particle in pressure-driven channel flows and disclose the nonlinear effects associated with fluid inertia leading to particle cross-stream migration. This information not only give us a fundamental insight into the dynamics of dilute suspensions, but also yield engineering guidelines for designing high throughput microfluidic devices for sorting and separation of synthetic particles and biological cells. We first demonstrate that spherical particles can be size-separated in ridged microchannels. Specifically, particles with different sizes follow distinct trajectories as a result of the nonlinear inertial effects and secondary flows created by diagonal ridges in the channel. Then, separation of biological cells by their differential stiffness is studied and compared with experimental results. Cells with different stiffness squeeze through narrow gaps between solid diagonal ridges and channel wall, and migrate across the microchannel with different rates depending on their stiffness. This deformability-based microfluidic platform may be valuable for separating diseased cells from healthy cells, as a variety of cell pathologies manifest through the change in mechanical cell stiffness. Finally, the dynamics of spheroid particles in simple shear and Poiseuille flows are studied. Stable rotational motion, cross-stream migration, and equilibrium trajectories of non-spherical particles in flow are investigated. Effects of particle and fluid inertia on dynamics of particles are disclosed. The dependence of equilibrium trajectory on particle shape reveals a potential application for shape based particle separation.

Book Visualization of Turbulence Modulation with Large Particles

Download or read book Visualization of Turbulence Modulation with Large Particles written by Franz Demetrius Davis and published by . This book was released on 1993 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Study of Turbulence Modulation in Gas particulate Flows

Download or read book Numerical Study of Turbulence Modulation in Gas particulate Flows written by Abhishek Shrivastava and published by . This book was released on 2006 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Dynamics of Finite size Settling Particles

Download or read book The Dynamics of Finite size Settling Particles written by Todor Doychev and published by . This book was released on 2020-10-09 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contributes to the fundamental understanding of the physical mechanisms that take place in pseudo turbulent particulate flows. In the present work we have considered the sedimentation of large numbers of spherical rigid particles in an initially quiescent flow field. We have performed direct numerical simulations employing an immersed boundary method for the representation of the fluid-solid interface. The results evidence that depending on the particle settling regime (i.e. Galileo number and particle-to-fluid density ratio) the particles may exhibit strong inhomogeneous spatial distribution. It is found that the particles are preferentially located in regions with downward fluid motion. The particles inside clusters experience larger settling velocities than the average. The flow in all flow cases is observed to exhibit characteristic features of pseudo-turbulence. The particle-induced flow field is further found to be highly anisotropic with dominant vertical components. The results indicate that, in the present flow configurations, the collective and mobility effects play significant role for the particle and fluid motion. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.

Book The Lattice Boltzmann Method

Download or read book The Lattice Boltzmann Method written by Timm Krüger and published by Springer. This book was released on 2016-11-07 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.

Book Turbulence Modulation in Gas particle Flows  a Comparison of Selected Models

Download or read book Turbulence Modulation in Gas particle Flows a Comparison of Selected Models written by Sarah M. Hodgson and published by . This book was released on 1999 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The problem of turbulence modulation, the process whereby the gas-phase turbulence is modified by the presence of particles, is investigated. Experimental trends are examined and parameters affecting turbulence modulation and the mechanisms by which turbulence modulation occurs are identified. A new model that accounts for the crossing trajectory effect is presented. This model and the turbulence modulation models of Chen and Wood [4], Tu and Fletcher [45], and Mostafa and Mongia [30] are investigated using the TASCflow CFD code. The models are compared with the experimental results of Tsuji et al [44]. The model of Tu and Fletcher is not able to reproduce either general experimental trends or the experimental results, while the other three models can predict the general experimental trends but cannot reproduce the experimental results. Analysis shows that the turbulent viscosity, [mu]'t', plays an important role in modifying the turbulence intensity profiles. The new model was not able to capture the crossing trajectory effect for the flow considered.

Book Numerical Simulations of Two  Way Coupling Effects in a Particle Laden Turbulent Pipe Flow  And  Evaluation of the Equilibrium Eulerian Approach for the Evolution of Particle Concentration in Isotropic Turbulence

Download or read book Numerical Simulations of Two Way Coupling Effects in a Particle Laden Turbulent Pipe Flow And Evaluation of the Equilibrium Eulerian Approach for the Evolution of Particle Concentration in Isotropic Turbulence written by Sarma Laxminarasimha Rani and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals of Multiphase Flow

Download or read book Fundamentals of Multiphase Flow written by Christopher E. Brennen and published by Cambridge University Press. This book was released on 2005-04-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Book Multiphase Flows with Droplets and Particles

Download or read book Multiphase Flows with Droplets and Particles written by Clayton T. Crowe and published by CRC Press. This book was released on 2011-08-26 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of the first edition of Multiphase Flow with Droplets and Particles, there have been significant advances in science and engineering applications of multiphase fluid flow. Maintaining the pedagogical approach that made the first edition so popular, this second edition provides a background in this important area of fluid mecha