EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Studies of Localized Surface Plasmon Resonance Generated in Embedded Nano Metallic Particles for Enhanced Efficiency Silicon Solar Cellls

Download or read book Studies of Localized Surface Plasmon Resonance Generated in Embedded Nano Metallic Particles for Enhanced Efficiency Silicon Solar Cellls written by Oren Guilatt and published by . This book was released on 2010 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Intelligent Computing Applications for Sustainable Real World Systems

Download or read book Intelligent Computing Applications for Sustainable Real World Systems written by Manjaree Pandit and published by Springer Nature. This book was released on 2020-04-03 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delves into various solution paradigms such as artificial neural network, support vector machine, wavelet transforms, evolutionary computing, swarm intelligence. During the last decade, novel solution technologies based on human and species intelligence have gained immense popularity due to their flexible and unconventional approach. New analytical tools are also being developed to handle big data processing and smart decision making. The idea behind compiling this work is to familiarize researchers, academicians, industry persons and students with various applications of intelligent techniques for producing sustainable, cost-effective and robust solutions of frequently encountered complex, real-world problems in engineering and science disciplines. The practical problems in smart grids, communication, waste management, elimination of harmful elements from nature, etc., are identified, and smart and optimal solutions are proposed.

Book Fabrication  Modification and Self assembly of Metallic Nano particles for Localized Surface Plasmon Resonance and Surface Enhanced Vibrational Spectroscopy Applications

Download or read book Fabrication Modification and Self assembly of Metallic Nano particles for Localized Surface Plasmon Resonance and Surface Enhanced Vibrational Spectroscopy Applications written by Meikun Fan and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Metallic nanoparticles (MNPs), especially those made of gold, silver, and copper, are of great importance in many scientific disciplines. The free electrons inside the MNPs can respond collectively to applied electromagnetic fields. This is called the excitation of localized surface plasmon resonance (LSPR). One of tile most important aspects of surface plasmons (SPs) excitation is that it allows the localization of 'the electromagnetic field al certain regions of tile nanostructured surface (or, in other words, the local field is "enhanced"). Based on this. surface enhanced Ramlln scattering (ERS) and localized surface plasmon resonance (LSPR) sensing can be realized. The work in this thesis can be divided in two parts: These include the exploration of self-assembled MNPs as new substrates for surface enhanced vibrational spectroscopy: and the sensing applications of these assembled MNPs. In the first part. the assembly ofMNPs on gold electrodes and glass slides were explored. Firstly. "layer-by-layer"' self-assembly of Au NPs on gold electrode was used to construct n highly sensitive and reproducible SERS substrate that can work in an electrochemical environment. The SERS perfonlmnce. in terms of enhancement and reproducibility, with the the numbers Au NPs "Iayers", was examined. Meanwhile, the potential window. during which a reproducible in sit" SERS experiment can be performed, was investigated. The possibility of such kind of substrate to be used in surface enhanced polarization modulation infrared absorption spectroscopy (PM-IRRAS) was also discussed. The "layer-by-layer" self-assembly idea was extended to Ag NPs supported on glass. The resulted substrate revealed that after multiple time self-assembly, the SERS enhancement performance of lhe substrate can be 3 to 4 orders of magnitude higher than just one Ag NPs deposition, depending on the wavelength used. Using this substrate, a near-single-molecule sensitivity has been achieved. In the second pan, sensing applications of the assembled MNPs were examined. The multiple "layers" Au NPs on gold electrode was used to characterize a sample biofuel cell anode, which consists three molecular "layers": the linker 4-hydroxyphenol (HTP), the co-enzyme analog Cibacron blue (CB), and the formaldehyde dehydrogenase (FaIDH). (In situ) SERS spectra or the sample biofuel cell at different construction stages were recorded and compared. The work about self-assembly ofAg NPs on glass was extended to fiber optics. The tip of a fiber optic was modified with multiple "layers" ofAg PSt and the analytical performance for remote sensing of this device was examined by the using of dyes with different structures and charges. It was found that this device was among one of the most sensitive SERS remote sensors when compared to the literature. Finally, a LSPR biosensor based on self-assembly of Ag NPs on PET, a common type of plastic, has been developed. The advantage of this sensor is that the surface of the Ag Ps was able to be tailored into differenl functional groups, and therefore met different requirements. Sample analysis for biological relevant species was performed.

Book Surface Plasmon Nanophotonics

Download or read book Surface Plasmon Nanophotonics written by Mark L. Brongersma and published by Springer. This book was released on 2007-09-18 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses a new class of photonic devices, known as surface plasmon nanophotonic structures. The book highlights several exciting new discoveries, while providing a clear discussion of the underlying physics, the nanofabrication issues, and the materials considerations involved in designing plasmonic devices with new functionality. Chapters written by the leaders in the field of plasmonics provide a solid background to each topic.

Book Localized Surface Plasmon Resonance Spectroscopy of Gold and Silver Nanoparticles and Plasmon Enhanced Flurescence

Download or read book Localized Surface Plasmon Resonance Spectroscopy of Gold and Silver Nanoparticles and Plasmon Enhanced Flurescence written by Elizabeth Anne Vokac and published by . This book was released on 2011 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents spectroscopic studies of metallic nanoparticle localized surface plasmons and plasmon enhanced fluorescence. We investigated the dielectric sensitivity of silver nanoprisms to an external electric field and gold nanorods to the formation of a self-assembled surface monolayer. Dark field microscopy was used to image plasmonic scattering from single nanoparticles, and a liquid crystal tunable filter was used to construct corresponding spectra. The plasmon resonances of silver nanoprisms displayed both reversible red shifts and irreversible blue shifts along with drastic intensity changes upon exposure to an applied bias. The plasmon resonances of gold nanorods showed sensitivity to the presence of alkanethiol molecules adhered to the particle surface by a moderate red shift. An increase in the effective external dielectric caused a shift toward longer wavelengths. We imaged plasmon enhanced fluorescence in order to optimize experimental parameters for a developing project that can characterize nanoparticle structure on sub-wavelength dimensions. Preliminary controls were performed to account for the effect of O2 plasma treatment, solvent and alkanethiol monolayer formation on surface plasmon resonances. We found that O2 plasma treatment for different time intervals did not result in a plasmon shift compared to untreated nanoparticles exposed to N2; however when exposed to solvent the surface plasmons of the treated particles shifted five times as far toward the red. Interestingly, the solvent effect only resulted in a plasmon shift when the particles were N2 dried after solvent incubation. Gold nanorods incubated in ethanol showed no wavelength maximum shift in pure solvent over time, but shifted moderately to the red after incubation in a solution of alkanethiol molecules. Conditions for the plasmon enhanced fluorescence study were optimized using a dye conjugate of the same alkanethiol molecule used previously by formation from solution in a monolayer on the gold nanorod surface. The appropriate synthesis for dye functionalization, molecular concentrations, solvents and optical settings were determined.

Book Cluster Beam Deposition of Functional Nanomaterials and Devices

Download or read book Cluster Beam Deposition of Functional Nanomaterials and Devices written by Paolo Milani and published by Elsevier. This book was released on 2020-03-11 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cluster Beam Deposition of Functional Nanomaterials and Devices, Volume 15, provides up-to-date information on the CBD of novel nanomaterials and devices. The book offers an overview of gas phase synthesis in a range of nanoparticles, along with discussions on the development of several devices and applications. Applications include, but are not limited to catalysis, smart nanocomposites, nanoprobes, electronic devices, gas sensors and biosensors. This is an important reference source for materials scientists and engineers who want to learn more about this sustainable, innovative manufacturing technology. - Explores the use of CBD for the fabrication of functionalized nanomaterials and devices - Shows how CBD is used for both sensing and biomedical applications - Discusses how this emerging technology is being commercialized for use on a large-scale

Book Materials for Sustainable Energy

Download or read book Materials for Sustainable Energy written by Vincent Dusastre and published by World Scientific. This book was released on 2011 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: The search for cleaner, cheaper, smaller and more efficient energy technologies has to a large extent been motivated by the development of new materials. The aim of this collection of articles is therefore to focus on what materials-based solutions can offer and show how the rationale design and improvement of their physical and chemical properties can lead to energy-production alternatives that have the potential to compete with existing technologies. In terms of alternative means to generate electricity that utilize renewable energy sources, the most dramatic breakthroughs for both mobile (i.e., transportation) and stationary applications are taking place in the fields of solar and fuel cells. And from an energy-storage perspective, exciting developments can be seen emerging from the fields of rechargeable batteries and hydrogen storage.

Book Fundamentals of Solar Cell Design

Download or read book Fundamentals of Solar Cell Design written by Inamuddin and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

Book Modeling of the Plasmon Resonance of Metallic Nanopaticles Embedded in Liquid Crystal

Download or read book Modeling of the Plasmon Resonance of Metallic Nanopaticles Embedded in Liquid Crystal written by Huan Wang and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal nanoparticles have unique optical properties, the control and optimization have a growing interest in fundamental research as same as applied research. A spectacular property of these nanoparticles is the localized surface plasmon resonance ( LSPR ), which is a consequence of the oscillations of free electrons at the interface between metal and dielectric.The spectral position of the plasmon resonance is largely dependent on the geometry of the nanoparticles, but also on the dielectric properties of the surrounding medium. It implies that the variation of the index of the medium surrounding the metallic nanostructures can control the LSPR resonance. Nematic liquid crystals are a great way to modify and control the plasmon resonance. Indeed, rotation of the liquid crystal molecules can induce a change in refractive index which results in a change in the optical response of the nanostructures. The aim of the thesis is to simulate arrays of gold nanoparticles in a nematic liquid crystal in order to predict the influence of the orientation of the LC molcules on the optical properties of these nanostructures. Numerical method we used is based on the finite difference time domain ( FDTD ) method. We have considered anchoring effects of molecules at the interfaces between the cell containing the liquid crystal and the substrates. And the results are compared with the case of uniform orientation of the LC molecules in the cell. The possibility of having double resonances was studied as well as the Surface Enhanced Raman Scattering (SERS ) gain associated with these specific structures.

Book Nanomaterials for Biosensors

Download or read book Nanomaterials for Biosensors written by Bansi D. Malhotra and published by William Andrew. This book was released on 2017-10-26 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanomaterials for Biosensors: Fundamentals and Applications provides a detailed summary of the main nanomaterials used in biosensing and their application. It covers recent developments in nanomaterials for the fabrication of biosensor devices for healthcare diagnostics, food freshness and bioprocessing. The various processes used for synthesis and characterization of nanostructured materials are examined, along with the design and fabrication of bioelectronic devices using nanostructured materials as building blocks. Users will find the fundamentals of the main nanomaterials used in biosensing, helping them visualize a systematic and coherent picture of how nanomaterials are used in biosensors. The book also addresses the role of bio-conjugation of nanomaterials in the construction of nano-biointerfaces for application in biosensors. Such applications, including metal nanoparticles, metal oxide nanoparticles, nanocomposites, carbon nanotubes, conducting polymers and plasmonic nanostructures in biosensing are discussed relative to each nanomaterial concerned. Finally, recent advancements in protein functionalized nanomaterials for cancer diagnostics and bio-imaging are also included. - Provides a detailed study on how nanomaterials are used to enhance sensing capabilities in biosensors - Explains the properties, characterization methods and preparation techniques of the nanomaterials used in biosensing - Arranged in a material-by-material way, making it clear how each nanomaterial should be used

Book Fabrication  Modification and Self assembly of Metallic Nano Particles for Localized Surface Plasmon Resonance and Surface Enhanced Vibrational Spectroscopy Applications

Download or read book Fabrication Modification and Self assembly of Metallic Nano Particles for Localized Surface Plasmon Resonance and Surface Enhanced Vibrational Spectroscopy Applications written by Meikun Fan and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanostructured Solar Cells

Download or read book Nanostructured Solar Cells written by Narottam Das and published by BoD – Books on Demand. This book was released on 2017-02-22 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured solar cells are very important in renewable energy sector as well as in environmental aspects, because it is environment friendly. The nano-grating structures (such as triangular or conical shaped) have a gradual change in refractive index which acts as a multilayer antireflective coating that is leading to reduced light reflection losses over broadband ranges of wavelength and angle of incidence. There are different types of losses in solar cells that always reduce the conversion efficiency, but the light reflection loss is the most important factor that decreases the conversion efficiency of solar cells significantly. The antireflective coating is an optical coating which is applied to the surface of lenses or any optical devices to reduce the light reflection losses. This coating assists for the light trapping capturing capacity or improves the efficiency of optical devices, such as lenses or solar cells. Hence, the multilayer antireflective coatings can reduce the light reflection losses and increases the conversion efficiency of nanostructured solar cells.

Book Silicon Nanophotonics for Mid Infrared Applications

Download or read book Silicon Nanophotonics for Mid Infrared Applications written by Hosam Ibrahim Mekawey and published by . This book was released on 2019 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: The research targets the challenge of being able to bring the recently discovered nanophotonics phenomena in the visible spectrum to the Mid-Infrared spectrum in order to be exploited in many mid-IR related applications which include sensing and energy harvesting. In addition to this, the material of choice needs to be silicon in order to take advantage of the low cost, mass fabrication capabilities offered by silicon-based, Complementary Metal Oxide Semiconductor (CMOS) standard fabrication techniques employed in the modern electronics industry. Mainly there are five research points that are being tackled. The first research point has 3 objectives. First, is to investigate and model the effect of plasma dispersion on silicon optical response in order to modulate the phase velocity as well as the absorption coefficient of the material. Second, is to identify the possibility of using silicon with high concentration of excess carriers, introduced either through doping or by optical excitation, instead of metals which are essential in realizing plasmonic-based phenomena in nanophotonics. The third and last objective of the first research point is to investigate the possibility for silicon to generate plasmonic effects in the mid-IR instead of the visible spectrum as the case with metals. Hence bringing many useful nanophotonics attributes to the mid-IR spectrum and the applications related to such spectral range. The second point is to perform modal analysis to identify the fundamental modes in both the rectangular cavity waveguide and the silicon-based slot waveguide due to the critical role they play in many nanophotonics devices and phenomena needed in subsequent research points. Also to investigate ways of engineering the dispersion of such modes in both waveguides.The third point is to investigate the existence of the Extraordinary Transmission (EOT) phenomenon in silicon perforated films. EOT was discovered in perforated metals in 1999. Investigation of the potential of using EOT for mid-IR sensing applications is also an objective. The fourth research point tackles the design of Nano-antenna for sensing applications by realizing an enhancement in the localized electric field in such nanoantenna. Enhanced scattering from silicon nanoparticles with high excess carriers' concentration and the dynamic real-time tuning of the resonance frequency for sensing and mid-IR spectroscopy applications is part of the objective of the fourth research point. Investigating dipole and bowtie shapes in silicon based nanoantenna and compare their performance with their metallic counterpart is also part of the objective of the fourth research point. Finally a fabrication objective of generating doped and intrinsic silicon nanowires by a single fabrication step through the use of excimer laser and deposited amorphous Silicon film was pursued under this research point. It is expected that the un-doped silicon nanowires can have an enhanced absorption in the visible range in comparison to the flat thin film counterpart. By being able to fabricate doped silicon nanowires, enhancing the absorption in the mid-IR spectrum could be a possibility that can be investigated. Designing a low loss subwavelength optical interconnect on the sub-micrometer level using silicon with high concentration of excess carriers is the fifth research point along with investigating the possibility of enhancing the transmission over bends in real-time through dynamic excess carrier generation. The working wavelength for the optical interconnect is expected to be in the near and mid-IR range. This research exploits recently discovered phenomena in the nanophotonics field and attempts to bring such phenomena to the mid-IR range to be used in the design of novel devices that can provide novel solution for sensing and energy harvesting in such spectrum. Specifically, Extraordinary Transmission (EOT), Localized Surface Plasmon Resonance (LSPR), Surface Plasmon Polariton (SPP), and the light guidance through subwavelength low index material regions are the key phenomena targeted by this research. This research also performs detailed investigation of the properties of subwavelength rectangular and slot waveguides to uncover more of their benefits and characterize their guidance attributes in details. Using Silicon as a material of choice is a priority due to its mature fabrication processes and the possibility of integrating silicon photonics devices into electronics chips using a CMOS-compatible fabrication process. It is also possible to tune the optical response of silicon through doping and excess carrier generation. The possibility for silicon to mimic the behavior of metal at the nanoscale in producing LSPR and SPP-based phenomena by introducing high concentration of excess carriers into silicon is a significant objective of this research which can bring low cost, mass fabrication to plasmonic-based optical devices operating in the mid-IR spectrum.

Book Collective Plasmon Modes in Gain Media

Download or read book Collective Plasmon Modes in Gain Media written by V.A.G. Rivera and published by Springer. This book was released on 2014-09-03 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book represents the first detailed description, including both theoretical aspects and experimental methods, of the interaction of rare-earth ions with surface plasmon polariton from the point of view of collective plasmon-photon interactions via resonance modes (metal nanoparticles or nanostructure arrays) with quantum emitters (rare-earth ions). These interactions are of particular interest for applications to optical telecommunications, optical displays, and laser solid state technologies. Thus, our main goal is to give a more precise overview of the rapidly emerging field of nanophotonics by means of the study of the quantum properties of light interaction with matter at the nanoscale. In this way, collective plasmon-modes in a gain medium result from the interaction/coupling between a quantum emitter (created by rare-earth ions) with a metallic surface, inducing different effects such as the polarization of the metal electrons (so-called surface plasmon polariton - SPP), a field enhancement sustained by resonance coupling, or transfer of energy due to non-resonant coupling between the metallic nanostructure and the optically active surrounding medium. These effects counteract the absorption losses in the metal to enhance luminescence properties or even to control the polarization and phase of quantum emitters. The engineering of plasmons/SPP in gain media constitutes a new field in nanophotonics science with a tremendous technological potential in integrated optics/photonics at the nanoscale based on the control of quantum effects. This book will be an essential tool for scientists, engineers, and graduate and undergraduate students interested not only in a new frontier of fundamental physics, but also in the realization of nanophotonic devices for optical telecommunication.

Book Plasmonics  Fundamentals and Applications

Download or read book Plasmonics Fundamentals and Applications written by Stefan Alexander Maier and published by Springer Science & Business Media. This book was released on 2007-05-16 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.

Book Encyclopedia of Plasma Technology   Two Volume Set

Download or read book Encyclopedia of Plasma Technology Two Volume Set written by J. Leon Shohet and published by CRC Press. This book was released on 2016-12-12 with total page 1654 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technical plasmas have a wide range of industrial applications. The Encyclopedia of Plasma Technology covers all aspects of plasma technology from the fundamentals to a range of applications across a large number of industries and disciplines. Topics covered include nanotechnology, solar cell technology, biomedical and clinical applications, electronic materials, sustainability, and clean technologies. The book bridges materials science, industrial chemistry, physics, and engineering, making it a must have for researchers in industry and academia, as well as those working on application-oriented plasma technologies. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]

Book Embedded Silver Nanoparticles for Metal Enhanced Photoluminescence

Download or read book Embedded Silver Nanoparticles for Metal Enhanced Photoluminescence written by Shahid Iqbal (Ph. D.) and published by . This book was released on 2019 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: Imaging of biologically significant molecules using plasmons of Metal Nanoparticles (MNPs) is gaining attention in the research community. Localized Surface Plasmon Resonance (LSPR) is the coherent oscillation of conduction electrons of MNPs. The biologically significant molecule is labeled with the fluorophore molecule to get the image. This approach is widely used in clinical practices, however, low intensity light emission from the labeled molecule makes it difficult to image the biologically significant material. One way to improve the weak intensities of fluorophore is to enhance the brightness using a process called Metal Enhanced Photoluminescence (MEP). This phenomenon occurs in the close vicinity of MNPs. Most of the studies in this regard have been carried out using chemically synthesized MNPs of different crystallinity, sizes and shapes. One problem with this approach is the possibility of direct chemical interaction between the fluorophore and MNPs that results in quenching of the Photoluminescence (PL) intensity. In this dissertation we adopted the approach to enhance the PL of different fluorophore molecules/materials by exploiting the LSPR of embedded noble MNPs. Noble MNPs (Au, Ag, Cu) are widely used because the LSPR resonant frequency falls in the visible region of the electromagnetic spectrum that closely overlaps with the excitation frequency of the fluorophore that are used for biological imaging. We tested our approach using Coumarin (C 515) dye and lead halide perovskites, CsPbX3 (X = Cl, Br, and I) and successfully enhanced PL intensity. Moreover, lead halide perovskites have several optoelectronics applications that make them fluorophore of interest. In this dissertation, embedded Silver Nanoparticles (Ag NPs) were synthesized via low energy ion implantation within a few nanometers below the surface of quartz substrates. Ion implantation was carried out with different ion beam fluences and 70 keV ion beam energy. Rutherford Backscattering Spectrometry (RBS) measurements were used to obtain the depth profile and concentration of silver within the quartz substrate. The formation of Ag NPs is characterized by UV/Visible spectroscopy measurements. LSPR peaks of Ag NPs were observed with respect to different fluences that confirmed the formation of embedded Ag NPs. An increase in the size distribution of Ag NPs was observed as the fluence of Ag within the substrate increased. Size increase of Ag NPs was confirmed by the broadening as well as the red-shift of LSPR peaks. Steady-state excitation and emission measurements of C 515, CsPbI3, CsPbBrI2, and CsPbBr3 were carried out to see the effect of embedded Ag NPs on the PL properties of fluorophores. An increase in the PL intensity of C 515, CsPbI3, and CsPbBrI2 was observed with the increase in fluences, giving maxima of 2.1, 3.6, and 5.9 times the PL intensity enhancement. The observed PL enhancement was attributed to a combination of plasmon enhancement with larger Ag NPs and increased plasmonic hot spots. In addition, PL quenching was also observed in case of the CsPbBr3 perovskite nanocomposites with the quenching corresponding to the non-radiative energy transfer from CsPbBr3 perovskite to silver nanoparticles.