Download or read book Pattern Recognition and Classification written by Geoff Dougherty and published by Springer Science & Business Media. This book was released on 2012-10-28 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of pattern recognition and classification is fundamental to many of the automated electronic systems in use today. However, despite the existence of a number of notable books in the field, the subject remains very challenging, especially for the beginner. Pattern Recognition and Classification presents a comprehensive introduction to the core concepts involved in automated pattern recognition. It is designed to be accessible to newcomers from varied backgrounds, but it will also be useful to researchers and professionals in image and signal processing and analysis, and in computer vision. Fundamental concepts of supervised and unsupervised classification are presented in an informal, rather than axiomatic, treatment so that the reader can quickly acquire the necessary background for applying the concepts to real problems. More advanced topics, such as semi-supervised classification, combining clustering algorithms and relevance feedback are addressed in the later chapters. This book is suitable for undergraduates and graduates studying pattern recognition and machine learning.
Download or read book Pattern Recognition and Machine Learning written by Christopher M. Bishop and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Download or read book Pattern Recognition and Machine Learning written by King-Sun Fu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the Proceedings of the US-Japan Seminar on Learning Process in Control Systems. The seminar, held in Nagoya, Japan, from August 18 to 20, 1970, was sponsored by the US-Japan Cooperative Science Program, jointly supported by the National Science Foundation and the Japan Society for the Promotion of Science. The full texts of all the presented papers except two t are included. The papers cover a great variety of topics related to learning processes and systems, ranging from pattern recognition to systems identification, from learning control to biological modelling. In order to reflect the actual content of the book, the present title was selected. All the twenty-eight papers are roughly divided into two parts--Pattern Recognition and System Identification and Learning Process and Learning Control. It is sometimes quite obvious that some papers can be classified into either part. The choice in these cases was strictly the editor's in order to keep a certain balance between the two parts. During the past decade there has been a considerable growth of interest in problems of pattern recognition and machine learn ing. In designing an optimal pattern recognition or control system, if all the a priori information about the process under study is known and can be described deterministically, the optimal system is usually designed by deterministic optimization techniques.
Download or read book Fundamentals of Pattern Recognition and Machine Learning written by Ulisses Braga-Neto and published by Springer Nature. This book was released on 2020-09-10 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Pattern Recognition and Machine Learning is designed for a one or two-semester introductory course in Pattern Recognition or Machine Learning at the graduate or advanced undergraduate level. The book combines theory and practice and is suitable to the classroom and self-study. It has grown out of lecture notes and assignments that the author has developed while teaching classes on this topic for the past 13 years at Texas A&M University. The book is intended to be concise but thorough. It does not attempt an encyclopedic approach, but covers in significant detail the tools commonly used in pattern recognition and machine learning, including classification, dimensionality reduction, regression, and clustering, as well as recent popular topics such as Gaussian process regression and convolutional neural networks. In addition, the selection of topics has a few features that are unique among comparable texts: it contains an extensive chapter on classifier error estimation, as well as sections on Bayesian classification, Bayesian error estimation, separate sampling, and rank-based classification. The book is mathematically rigorous and covers the classical theorems in the area. Nevertheless, an effort is made in the book to strike a balance between theory and practice. In particular, examples with datasets from applications in bioinformatics and materials informatics are used throughout to illustrate the theory. These datasets are available from the book website to be used in end-of-chapter coding assignments based on python and scikit-learn. All plots in the text were generated using python scripts, which are also available on the book website.
Download or read book Introduction to Statistical Pattern Recognition written by Keinosuke Fukunaga and published by Elsevier. This book was released on 2013-10-22 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: This completely revised second edition presents an introduction to statistical pattern recognition. Pattern recognition in general covers a wide range of problems: it is applied to engineering problems, such as character readers and wave form analysis as well as to brain modeling in biology and psychology. Statistical decision and estimation, which are the main subjects of this book, are regarded as fundamental to the study of pattern recognition. This book is appropriate as a text for introductory courses in pattern recognition and as a reference book for workers in the field. Each chapter contains computer projects as well as exercises.
Download or read book Handbook Of Pattern Recognition And Computer Vision 2nd Edition written by Chi Hau Chen and published by World Scientific. This book was released on 1999-03-12 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.
Download or read book Statistical Pattern Recognition written by Andrew R. Webb and published by John Wiley & Sons. This book was released on 2003-07-25 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref="http://www.statistical-pattern-recognition.net/"www.statistical-pattern-recognition.net/a
Download or read book Pattern Recognition Applications and Methods written by Maria De Marsico and published by Springer Nature. This book was released on 2020-01-24 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains revised and extended versions of selected papers from the 8th International Conference on Pattern Recognition, ICPRAM 2019, held in Prague, Czech Republic, in February 2019. The 25 full papers presented together 52 short papers and 32 poster sessions were carefully reviewed and selected from 138 initial submissions. Contributions describing applications of Pattern Recognition techniques to real-world problems, interdisciplinary research, experimental and/or theoretical studies yielding new insights that advance Pattern Recognition methods are especially encouraged.
Download or read book Correlation Pattern Recognition written by B. V. K. Vijaya Kumar and published by Cambridge University Press. This book was released on 2005-11-24 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Correlation is a robust and general technique for pattern recognition and is used in many applications, such as automatic target recognition, biometric recognition and optical character recognition. The design, analysis and use of correlation pattern recognition algorithms requires background information, including linear systems theory, random variables and processes, matrix/vector methods, detection and estimation theory, digital signal processing and optical processing. This book provides a needed review of this diverse background material and develops the signal processing theory, the pattern recognition metrics, and the practical application know-how from basic premises. It shows both digital and optical implementations. It also contains technology presented by the team that developed it and includes case studies of significant interest, such as face and fingerprint recognition. Suitable for graduate students taking courses in pattern recognition theory, whilst reaching technical levels of interest to the professional practitioner.
Download or read book Applied Pattern Recognition written by Horst Bunke and published by Springer. This book was released on 2008-02-28 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: A sharp increase in the computing power of modern computers has triggered the development of powerful algorithms that can analyze complex patterns in large amounts of data within a short time period. Consequently, it has become possible to apply pattern recognition techniques to new tasks. The main goal of this book is to cover some of the latest application domains of pattern recognition while presenting novel techniques that have been developed or customized in those domains.
Download or read book Applied Pattern Recognition written by Dietrich W.R. Paulus and published by Morgan Kaufmann Publishers. This book was released on 1998 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates the efficiency of the C++ programming language in the realm of pattern recognition and pattern analysis. It introduces the basics of software engineering, image and speech processing, als well as fundamental mathematical tools for pattern recognition. Step by step the C++ programming language is discribed. Each step is illustrated by examples based on challenging problems in image und speech processing. Particular emphasis is put on object-oriented programming and the implementation of efficient algorithms. The book proposes a general class hierarchy for image segmentation. The essential parts of an implementation are presented. An object-oriented system for speech classification based on stochastic models is described.
Download or read book Conformal and Probabilistic Prediction with Applications written by Alexander Gammerman and published by Springer. This book was released on 2016-04-16 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 5th International Symposium on Conformal and Probabilistic Prediction with Applications, COPA 2016, held in Madrid, Spain, in April 2016. The 14 revised full papers presented together with 1 invited paper were carefully reviewed and selected from 23 submissions and cover topics on theory of conformal prediction; applications of conformal prediction; and machine learning.
Download or read book Pattern Recognition written by Sergios Theodoridis and published by Elsevier. This book was released on 2003-05-15 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "learn" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest
Download or read book Pattern Recognition written by Jürgen Beyerer and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-12-04 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book offers a thorough introduction to Pattern Recognition aimed at master and advanced bachelor students of engineering and the natural sciences. Besides classification - the heart of Pattern Recognition - special emphasis is put on features, their typology, their properties and their systematic construction. Additionally, general principles that govern Pattern Recognition are illustrated and explained in a comprehensible way. Rather than presenting a complete overview over the rapidly evolving field, the book is to clarifies the concepts so that the reader can easily understand the underlying ideas and the rationale behind the methods. For this purpose, the mathematical treatment of Pattern Recognition is pushed so far that the mechanisms of action become clear and visible, but not farther. Therefore, not all derivations are driven into the last mathematical detail, as a mathematician would expect it. Ideas of proofs are presented instead of complete proofs. From the authors’ point of view, this concept allows to teach the essential ideas of Pattern Recognition with sufficient depth within a relatively lean book. Mathematical methods explained thoroughly Extremely practical approach with many examples Based on over ten years lecture at Karlsruhe Institute of Technology For students but also for practitioners
Download or read book Neural Networks for Pattern Recognition written by Christopher M. Bishop and published by Oxford University Press. This book was released on 1995-11-23 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.
Download or read book Pattern Recognition Techniques Applied to Biomedical Problems written by Martha Refugio Ortiz-Posadas and published by Springer Nature. This book was released on 2020-02-29 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers pattern recognition techniques applied to various areas of biomedicine, including disease diagnosis and prognosis, and several problems of classification, with a special focus on—but not limited to—pattern recognition modeling of biomedical signals and images. Multidisciplinary by definition, the book’s topic blends computing, mathematics and other technical sciences towards the development of computational tools and methodologies that can be applied to pattern recognition processes. In this work, the efficacy of such methods and techniques for processing medical information is analyzed and compared, and auxiliary criteria for determining the correct diagnosis and treatment strategies are recommended and applied. Researchers in applied mathematics, the computer sciences, engineering and related fields with a focus on medical applications will benefit from this book, as well as professionals with a special interest in state-of-the-art pattern recognition techniques as applied to biomedicine.
Download or read book Computational Intelligence for Pattern Recognition written by Witold Pedrycz and published by Springer. This book was released on 2018-04-30 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a comprehensive and up-to-date review of fuzzy pattern recognition. It carefully discusses a range of methodological and algorithmic issues, as well as implementations and case studies, and identifies the best design practices, assesses business models and practices of pattern recognition in real-world applications in industry, health care, administration, and business. Since the inception of fuzzy sets, fuzzy pattern recognition with its methodology, algorithms, and applications, has offered new insights into the principles and practice of pattern classification. Computational intelligence (CI) establishes a comprehensive framework aimed at fostering the paradigm of pattern recognition. The collection of contributions included in this book offers a representative overview of the advances in the area, with timely, in-depth and comprehensive material on the conceptually appealing and practically sound methodology and practices of CI-based pattern recognition.