EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Structure Of Solutions Of Differential Equations

Download or read book Structure Of Solutions Of Differential Equations written by Takahiro Kawai and published by World Scientific. This book was released on 1996-04-25 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of papers on current topics and future problems in the theory of differential equations which were reported at the Taniguchi symposium (Katata) and RIMS symposium (Kyoto); Painlevé transcendents, Borel resummation, linear differential equations of infinite order, solvability of microdifferential equations, Gevrey index, etc. are among them.

Book Order Structure and Topological Methods in Nonlinear Partial Differential Equations

Download or read book Order Structure and Topological Methods in Nonlinear Partial Differential Equations written by Yihong Du and published by World Scientific. This book was released on 2006 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems.The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time.

Book Structure of Solutions of Differential Equations

Download or read book Structure of Solutions of Differential Equations written by Takahiro Kawai and published by World Scientific. This book was released on 1996 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Partial Differential Equations

Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Book Solution Sets for Differential Equations and Inclusions

Download or read book Solution Sets for Differential Equations and Inclusions written by Smaïl Djebali and published by Walter de Gruyter. This book was released on 2012-12-06 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph gives a systematic presentation of classical and recent results obtained in the last couple of years. It comprehensively describes the methods concerning the topological structure of fixed point sets and solution sets for differential equations and inclusions. Many of the basic techniques and results recently developed about this theory are presented, as well as the literature that is disseminated and scattered in several papers of pioneering researchers who developed the functional analytic framework of this field over the past few decades. Several examples of applications relating to initial and boundary value problems are discussed in detail. The book is intended to advanced graduate researchers and instructors active in research areas with interests in topological properties of fixed point mappings and applications; it also aims to provide students with the necessary understanding of the subject with no deep background material needed. This monograph fills the vacuum in the literature regarding the topological structure of fixed point sets and its applications.

Book Differential Equations

Download or read book Differential Equations written by Hans Stephani and published by Cambridge University Press. This book was released on 1989 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the theory and application of the solution to differential equations using symmetries, a technique of great value in mathematics and the physical sciences. It will apply to graduate students in physics, applied mathematics, and engineering.

Book Ordinary Differential Equations and Dynamical Systems

Download or read book Ordinary Differential Equations and Dynamical Systems written by Gerald Teschl and published by American Mathematical Soc.. This book was released on 2012-08-30 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Book Linear Differential Equations in the Complex Domain

Download or read book Linear Differential Equations in the Complex Domain written by Yasutaka Sibuya and published by American Mathematical Soc.. This book was released on 2008-06-26 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a translation of a 1976 book originally written in Japanese. The main attention is paid to intrinsic aspects of problems related to linear ordinary differential equations in complex domains. Examples of the problems discussed in the book include the Riemann problem on the Riemann sphere, a characterization of regular singularities, and a classification of meromorphic differential equations. Since the original book was published, many new ideas have developed, such as applications of D-modules, Gevrey asymptotics, cohomological methods, $k$-summability, and studies of differential equations containing parameters. Five appendices, added in the present edition, briefly cover these new ideas. In addition, more than 100 references have been added. This book introduces the reader to the essential facts concerning the structure of solutions of linear differential equations in the complex domain and illuminates the intrinsic meaning of older results by means of more modern ideas. A useful reference for research mathematicians, this book would also be suitable as a textbook in a graduate course or seminar.

Book Order Structure and Topological Methods in Nonlinear Partial Differential Equations

Download or read book Order Structure and Topological Methods in Nonlinear Partial Differential Equations written by Yihong Du and published by World Scientific. This book was released on 2006 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems. The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time. Sample Chapter(s). Chapter 1: Krein-Rutman Theorem and the Principal Eigenvalue (128 KB). Contents: KreinOCoRutman Theorem and the Principal Eigenvalue; Maximum Principles Revisited; The Moving Plane Method; The Method of Upper and Lower Solutions; The Logistic Equation; Boundary Blow-Up Problems; Symmetry and Liouville Type Results Over Half and Entire Spaces. Readership: Researchers and postgraduate students in partial differential equations."

Book An Introduction to Ordinary Differential Equations

Download or read book An Introduction to Ordinary Differential Equations written by Earl A. Coddington and published by . This book was released on 1961 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is meant to be a text which can be used for a first course in ordinary differential equations. The student is assumed to have a knowledge of calculus but not what is usually called advanced calculus. The aim is to give an elementary, thorough systematic introduction to the subject. All significant results are stated as theorems, and careful proofs are given. The exercises in the book serve two purposes: to develop the student's technique in solving equations, or to help sharpen the student's understanding of the mathematical structure of the subject. The exercises also introduce the student to a variety of topics not treated in the text: stability, equations with periodic coefficients, and boundary value problems.

Book Geometric Numerical Integration

Download or read book Geometric Numerical Integration written by Ernst Hairer and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by numerous figures, treats applications from physics and astronomy, and contains many numerical experiments and comparisons of different approaches.

Book Fine Regularity of Solutions of Elliptic Partial Differential Equations

Download or read book Fine Regularity of Solutions of Elliptic Partial Differential Equations written by Jan Malý and published by American Mathematical Soc.. This book was released on 1997 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary objective of this monograph is to give a comprehensive exposition of results surrounding the work of the authors concerning boundary regularity of weak solutions of second order elliptic quasilinear equations in divergence form. The book also contains a complete development of regularity of solutions of variational inequalities, including the double obstacle problem, where the obstacles are allowed to be discontinuous. The book concludes with a chapter devoted to the existence theory thus providing the reader with a complete treatment of the subject ranging from regularity of weak solutions to the existence of weak solutions.

Book Applied Stochastic Differential Equations

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Book Scaling of Differential Equations

Download or read book Scaling of Differential Equations written by Hans Petter Langtangen and published by Springer. This book was released on 2016-06-15 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and example-driven. The first part on ODEs fits even a lower undergraduate level, while the most advanced multiphysics fluid mechanics examples target the graduate level. The scientific literature is full of scaled models, but in most of the cases, the scales are just stated without thorough mathematical reasoning. This book explains how the scales are found mathematically. This book will be a valuable read for anyone doing numerical simulations based on ordinary or partial differential equations.

Book Discrete Variational Derivative Method

Download or read book Discrete Variational Derivative Method written by Daisuke Furihata and published by CRC Press. This book was released on 2010-12-09 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Partial Differential Equations (PDEs) have become increasingly important in the description of physical phenomena. Unlike Ordinary Differential Equations, PDEs can be used to effectively model multidimensional systems. The methods put forward in Discrete Variational Derivative Method concentrate on a new class of "structure-preserving num

Book Computational Differential Equations

Download or read book Computational Differential Equations written by Kenneth Eriksson and published by Cambridge University Press. This book was released on 1996-09-05 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook on computational mathematics is based on a fusion of mathematical analysis, numerical computation and applications.

Book Lectures On The Theory Of Group Properties Of Differential Equations

Download or read book Lectures On The Theory Of Group Properties Of Differential Equations written by Lev Vasilyevich Ovsyannikov and published by World Scientific Publishing Company. This book was released on 2013-05-20 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecturers provide a clear introduction to Lie group methods for determining and using symmetries of differential equations, a variety of their applications in gas dynamics and other nonlinear models as well as the author's remarkable contribution to this classical subject. It contains material that is useful for students and teachers but cannot be found in modern texts. For example, the theory of partially invariant solutions developed by Ovsyannikov provides a powerful tool for solving systems of nonlinear differential equations and investigating complicated mathematical models.