EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Structural Optimization of Wind Turbine Blades for Improved Dynamic Performance

Download or read book Structural Optimization of Wind Turbine Blades for Improved Dynamic Performance written by Gerges Edwar Beshay and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design of the main structure of a wind turbine blade is optimized aiming at the improvement of the overall dynamic performance. Three optimization strategies are developed and tested. The first fundamental one is based on minimizing the total structural mass of the blade spar under frequency and strength constraints. The second and third strategies are concerned with the reduction of the overall vibration level by either minimizing a frequency-placement index or maximizing the natural frequencies and placing them at their target values to avoid large amplitudes and resonance occurrence. Design variables include cross-sectional dimensions and material properties along the spanwise direction of the blade spar. The optimization problem is formulated as a nonlinear constrained problem solved by sequential quadratic programming (SQP) technique. Two specific layup configurations, namely, circumferentially asymmetric stiffness ( CAS ) and circumferentially uniform stiffness ( CUS ), are analyzed. Exact analytical methods are applied to calculate the natural modes of vibration of a composite, thin-walled, tapered blade spar. The influence of coupling on the vibration modes is identified, and the functional behavior of the frequencies with the lamination parameters is thoroughly investigated and discussed. Finite element modeling using NX Nastran solver is performed in order to validate the analytical results. As a case study, optimized blade spar designs of a 750-kW horizontal axis wind turbine are given. The attained solutions show that the approach used in this study enhances the dynamic characteristics of the optimized spar structures as compared with a known baseline design of the wind turbine blade.

Book Design Optimization of Wind Energy Conversion Systems with Applications

Download or read book Design Optimization of Wind Energy Conversion Systems with Applications written by Karam Maalawi and published by BoD – Books on Demand. This book was released on 2020-04-15 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern and larger horizontal-axis wind turbines with power capacity reaching 15 MW and rotors of more than 235-meter diameter are under continuous development for the merit of minimizing the unit cost of energy production (total annual cost/annual energy produced). Such valuable advances in this competitive source of clean energy have made numerous research contributions in developing wind industry technologies worldwide. This book provides important information on the optimum design of wind energy conversion systems (WECS) with a comprehensive and self-contained handling of design fundamentals of wind turbines. Section I deals with optimal production of energy, multi-disciplinary optimization of wind turbines, aerodynamic and structural dynamic optimization and aeroelasticity of the rotating blades. Section II considers operational monitoring, reliability and optimal control of wind turbine components.

Book Wind Turbine Power Optimization Technology

Download or read book Wind Turbine Power Optimization Technology written by Francesco Castellani and published by MDPI. This book was released on 2020-05-27 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind turbines are one of the most promising renewable energy technologies, and this motivates fertile research activity about developments in power optimization. This topic covers a wide range of aspects, from the research on aerodynamics and control design to the industrial applications about on-site wind turbine performance control and monitoring. This Special Issue collects seven research papers about several innovative aspects of the multi-faceted topic of wind turbine power optimization technology. The seven research papers deal respectively with the aerodynamic optimization of wind turbine blades through Gurney flaps; optimization of blade design for large offshore wind turbines; control design optimization of large wind turbines through the analysis of the competing objectives of energy yield maximization and fatigue loads minimization; design optimization of a tension leg platform for floating wind turbines; innovative methods for the assessment of wind turbine optimization technologies operating on site; optimization of multiple wake interactions modeling through the introduction of a mixing coefficient in the energy balance method; and optimization of the dynamic stall control of vertical-axis wind turbines through plasma actuators. This Special Issue presents remarkable research activities in the timely subject of wind turbine power optimization technology, covering various aspects. The collection is believed to be beneficial to readers and contribute to the wind power industry.

Book Optimization of Wind Turbine Airfoils blades and Wind Farm Layouts

Download or read book Optimization of Wind Turbine Airfoils blades and Wind Farm Layouts written by Xiaomin Chen (Mechanical engineer) and published by . This book was released on 2014 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shape optimization is widely used in the design of wind turbine blades. In this dissertation, a numerical optimization method called Genetic Algorithm (GA) is applied to address the shape optimization of wind turbine airfoils and blades. In recent years, the airfoil sections with blunt trailing edge (called flatback airfoils) have been proposed for the inboard regions of large wind-turbine blades because they provide several structural and aerodynamic performance advantages. The FX, DU and NACA 64 series airfoils are thick airfoils widely used for wind turbine blade application. They have several advantages in meeting the intrinsic requirements for wind turbines in terms of design point, off-design capabilities and structural properties. This research employ both single- and multi-objective genetic algorithms (SOGA and MOGA) for shape optimization of Flatback, FX, DU and NACA 64 series airfoils to achieve maximum lift and/or maximum lift to drag ratio. The commercially available software FLUENT is employed for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a two-equation Shear Stress Transport (SST) turbulence model and a three equation k-kl-[omega] turbulence model. The optimization methodology is validated by an optimization study of subsonic and transonic airfoils (NACA0012 and RAE 2822 airfoils). All the optimization results have demonstrated that the GA technique can be employed efficiently and accurately to produce globally optimal airfoils with excellent aerodynamic properties using a desired objective value (minimum Cd and/or maximum Cl /Cd). It is also shown that the multi-objective genetic algorithm based optimization can generate superior airfoils compared to those obtained by using the single objective genetic algorithm. The applications of thick airfoils are extended to the assessment of wind turbine performance. It is well established that the power generated by a Horizontal-Axis Wind Turbine (HAWT) is a function of the number of blades B, the tip speed ratio [lambda] (blade tip speed/wind free stream velocity) and the lift to drag ratio (Cl /Cd) of the airfoil sections of the blade. The airfoil sections used in HAWT are generally thick airfoils such as the S, DU, FX, Flat-back and NACA 6-series of airfoils. These airfoils vary in (Cl /Cd) for a given B and [lambda], and therefore the power generated by HAWT for different blade airfoil sections will vary. Another goal of this study is to evaluate the effect of different airfoil sections on HAWT performance using the Blade Element Momentum (BEM) theory. In this dissertation, we employ DU 91-W2-250, FX 66-S196-V1, NACA 64421, and Flat-back series of airfoils (FB-3500-0050, FB-3500-0875, and FB-3500-1750) and compare their performance with S809 airfoil used in NREL Phase II and III wind turbines; the lift and drag coefficient data for these airfoils sections are available. The output power of the turbine is calculated using these airfoil section blades for a given B and [lambda] and is compared with the original NREL Phase II and Phase III turbines using S809 airfoil section. It is shown that by a suitable choice of airfoil section of HAWT blade, the power generated by the turbine can be significantly increased. Parametric studies are also conducted by varying the turbine diameter. In addition, a simplified dynamic inflow model is integrated into the BEM theory. It is shown that the improved BEM theory has superior performance in capturing the instantaneous behavior of wind turbines due to the existence of wind turbine wake or temporal variations in wind velocity. The dissertation also considers the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal -Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed. Finally, some preliminary investigation of shape optimization of 3D wind turbine blades at low Reynolds numbers is conducted. The optimization employs a 3D straight untapered wind turbine blade with cross section of NACA 0012 airfoils as the geometry of baseline blade. The optimization objective is to achieve maximum Cl /Cd as well as maximum Cl. The multi-objective genetic algorithm is employed together with the commercially available software FLUENT for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a one-equation Sparlart-Allmaras turbulence model. The results show excellent performance of the optimized wind turbine blade and indicate the feasibility of optimization on real wind turbine blades with more complex shapes in the future.

Book Structural Analysis of Composite Wind Turbine Blades

Download or read book Structural Analysis of Composite Wind Turbine Blades written by Dimitris I Chortis and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and damping values of composite strips of various angle-ply laminations under either tensile or buckling loading. A series of correlation cases between numerical predictions and experimental measurements give credence to the developed nonlinear beam finite element models and underline the essential role of new nonlinear damping and stiffness terms.

Book Structural Optimization of Wind Turbine Blades

Download or read book Structural Optimization of Wind Turbine Blades written by and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Aerodynamics of Wind Turbines  2nd edition

Download or read book Aerodynamics of Wind Turbines 2nd edition written by Martin O. L. Hansen and published by Routledge. This book was released on 2013-05-13 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The new material includes a description of the effects of the dynamics and how this can be modelled in an ?aeroelastic code?, which is widely used in the design and verification of modern wind turbines. Further, the description of how to calculate the vibration of the whole construction, as well as the time varying loads, has been substantially updated.

Book Advances in Wind Turbine Blade Design and Materials

Download or read book Advances in Wind Turbine Blade Design and Materials written by Povl Brondsted and published by Elsevier. This book was released on 2013-10-31 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world's consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades.Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine blades.Advances in wind turbine blade design and materials offers a comprehensive review of the recent advances and challenges encountered in wind turbine blade materials and design, and will provide an invaluable reference for researchers and innovators in the field of wind energy production, including materials scientists and engineers, wind turbine blade manufacturers and maintenance technicians, scientists, researchers and academics. - Reviews the design and functionality of wind turbine rotor blades - Examines the requirements and challenges for composite materials used in both current and future designs of wind turbine blades - Provides an invaluable reference for researchers and innovators in the field of wind energy production

Book Advances in Wind Power

Download or read book Advances in Wind Power written by Rupp Carriveau and published by BoD – Books on Demand. This book was released on 2012-11-21 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today's wind energy industry is at a crossroads. Global economic instability has threatened or eliminated many financial incentives that have been important to the development of specific markets. Now more than ever, this essential element of the world energy mosaic will require innovative research and strategic collaborations to bolster the industry as it moves forward. This text details topics fundamental to the efficient operation of modern commercial farms and highlights advanced research that will enable next-generation wind energy technologies. The book is organized into three sections, Inflow and Wake Influences on Turbine Performance, Turbine Structural Response, and Power Conversion, Control and Integration. In addition to fundamental concepts, the reader will be exposed to comprehensive treatments of topics like wake dynamics, analysis of complex turbine blades, and power electronics in small-scale wind turbine systems.

Book Wind Turbine Airfoils and Blades

Download or read book Wind Turbine Airfoils and Blades written by Jin Chen and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-12-04 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind Turbine Airfoils and Blades introduces new ideas in the design of wind turbine airfoils and blades based on functional integral theory and the finite element method, accompanied by results from wind tunnel testing. The authors also discuss the optimization of wind turbine blades as well as results from aerodynamic analysis. This book is suitable for researchers and engineers in aeronautics and can be used as a textbook for graduate students.

Book Wind Turbine Technology

Download or read book Wind Turbine Technology written by Muyiwa Adaramola and published by CRC Press. This book was released on 2014-02-24 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title includes a number of Open Access chapters. This important book presents a selection of new research on wind turbine technology, including aerodynamics, generators and gear systems, towers and foundations, control systems, and environmental issues. This informative book: • Introduces the principles of wind turbine design • Presents methods for analysis of wind turbine performance • Discusses approaches for wind turbine improvement and optimization • Covers fault detection in wind turbines • Describes mediating the adverse effects of wind turbine use and installation

Book Three Dimensional Aero Structural Shape Optimization of Turbomachinery Blades

Download or read book Three Dimensional Aero Structural Shape Optimization of Turbomachinery Blades written by Vadivel Kumaran Sivashanmugam and published by . This book was released on 2011 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aero-structural optimization of gas turbine blades is a very challenging task, given e.g. three dimensional nature of the flow, stringent performance requirements, structural and manufacturing considerations, etc. The current research work addresses this challenge by development and implementation of structural shape optimization module and integrating it with an aerodynamic shape optimization module to form an automated aero-structural optimization procedure. The optimizer combines a Multi-Objective Genetic Algorithm (MOGA), with a Response Surface Approximation (RSA) of the Artificial Neural Network (ANN) type. During the optimization process, each objective function and constraint is approximated by an individual ANN, which is trained and tested using an aerodynamic as well as a structure database composed of a few high fidelity flow simulations (CFD) and structure analysis (CSD) that are obtained using ANSYS Workbench 11.0. Addition of this multiple ANN technique to the optimizer greatly improves the accuracy of the RSA, provides control over handling different design variables and disciplines. The described methodology is then applied to the aero-structural optimization of the E/TU-3 turbine blade row and stage at design conditions to improve the aerodynamic and structural performance of the turbomachinery blades by optimizing the stacking curve. The proposed methodology proved quite successful, flexible and practical with significant increase in stage efficiency and decrease in equivalent stress.

Book Advances in wind turbine blade design and materials

Download or read book Advances in wind turbine blade design and materials written by B. Madsen and published by Elsevier Inc. Chapters. This book was released on 2013-10-31 with total page 33 pages. Available in PDF, EPUB and Kindle. Book excerpt: This chapter about biobased composites starts by presenting the most promising types of cellulose fibres; their properties, processing and preforms for composites, together with an introduction to biobased matrix materials. The chapter then presents the typical mechanical properties of biobased composites, based on examples of composites with different fibre/matrix combinations, followed by a case study of the stiffness and specific stiffness of cellulose fibre composites vs glass fibre composites using micromechanical model calculations. Finally, the chapter presents some of the special considerations to be addressed in the development and application of biobased composites.

Book Advances in composite wind turbine blades  A comparative study

Download or read book Advances in composite wind turbine blades A comparative study written by Adam Chehouri and published by diplom.de. This book was released on 2014-03-01 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the wind industry, the current trend is towards building larger and larger turbines. This presents additional structural challenges and requires blade materials that are both lighter and stiffer than the ones presently used. This study is aimed to aid the work of designing new wind turbine blades by providing a comparative study of different composite materials. A coupled Finite-Element-Method (FEM) - Blade Element Momentum (BEM) code was used to simulate the aerodynamic forces subjected on the blade. For this study, the finite element study was conducted on the Static Structural Workbench of ANSYS, as for the geometry of the blade it was imported from a previous study prepared by Cornell University. Confirmation of the performance analysis of the chosen wind turbine blade is presented and discussed including the generated power, tip deflection, thrust and tangential force for a steady flow of 8m/s. A homogenization method was applied to derive the mechanical properties and ultimate strengths of the composites. The Tsai-Hill and Hoffman failure criterions were both conducted to the resulting stresses and shears for each blade composite material structure to determine the presence of static rupture. A progressive fatigue damage model was conducted to simulate the fatigue behavior of laminated composite materials, an algorithm developed by Shokrieh.

Book MARE WINT

Download or read book MARE WINT written by Wiesław Ostachowicz and published by Springer. This book was released on 2016-08-30 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a holistic, interdisciplinary overview of offshore wind energy, and is a must-read for advanced researchers. Topics, from the design and analysis of future turbines, to the decommissioning of wind farms, are covered. The scope of the work ranges from analytical, numerical and experimental advancements in structural and fluid mechanics, to novel developments in risk, safety & reliability engineering for offshore wind.The core objective of the current work is to make offshore wind energy more competitive, by improving the reliability, and operations and maintenance (O&M) strategies of wind turbines. The research was carried out under the auspices of the EU-funded project, MARE-WINT. The project provided a unique opportunity for a group of researchers to work closely together, undergo multidisciplinary doctoral training, and conduct research in the area of offshore wind energy generation. Contributions from expert, external authors are also included, and the complete work seeks to bridge the gap between research and a rapidly-evolving industry.

Book Maintenance Management of Wind Turbines

Download or read book Maintenance Management of Wind Turbines written by Fausto Pedro García Márquez and published by MDPI. This book was released on 2020-12-06 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Maintenance Management of Wind Turbines” considers the main concepts and the state-of-the-art, as well as advances and case studies on this topic. Maintenance is a critical variable in industry in order to reach competitiveness. It is the most important variable, together with operations, in the wind energy industry. Therefore, the correct management of corrective, predictive and preventive politics in any wind turbine is required. The content also considers original research works that focus on content that is complementary to other sub-disciplines, such as economics, finance, marketing, decision and risk analysis, engineering, etc., in the maintenance management of wind turbines. This book focuses on real case studies. These case studies concern topics such as failure detection and diagnosis, fault trees and subdisciplines (e.g., FMECA, FMEA, etc.) Most of them link these topics with financial, schedule, resources, downtimes, etc., in order to increase productivity, profitability, maintainability, reliability, safety, availability, and reduce costs and downtime, etc., in a wind turbine. Advances in mathematics, models, computational techniques, dynamic analysis, etc., are employed in analytics in maintenance management in this book. Finally, the book considers computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques that are expertly blended to support the analysis of multi-criteria decision-making problems with defined constraints and requirements.