Download or read book Stochastic Processes on a Lattice and Gibbs Measures written by Bernard Prum and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: In many domains one encounters "systems" of interacting elements, elements that interact more forcefully the closer they may be. The historical example upon which the theory offered in this book is based is that of magnetization as it is described by the Ising model. At the vertices of a regular lattice of sites, atoms "choos e" an orientation under the influence of the orientations of the neighboring atoms. But other examples are known, in physics (the theories of gasses, fluids, .. J, in biology (cells are increasingly likely to become malignant when their neighboring cells are malignant), or in medecine (the spread of contagious deseases, geogenetics, .. .), even in the social sciences (spread of behavioral traits within a population). Beyond the spacial aspect that is related to the idea of "neighboring" sites, the models for all these phenomena exhibit three common features: - The unavoidable ignorance about the totality of the phenomenon that is being studied and the presence of a great number of often unsuspected factors that are always unquantified lead inevitably to stochastic models. The concept of accident is very often inherent to the very nature of the phenomena considered, so, to justify this procedure, one has recourse to the physicist's principle of indeterminacy, or, for example, to the factor of chance in the Mendelian genetics of phenotypes.
Download or read book Probability on Graphs written by Geoffrey Grimmett and published by Cambridge University Press. This book was released on 2018-01-25 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.
Download or read book Stochastic Processes written by Wolfgang Paul and published by Springer Science & Business Media. This book was released on 1999 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introduction to stochastic processes with applications from physics and finance. It introduces the basic notions of probability theory and the mathematics of stochastic processes. The applications that we discuss are chosen to show the interdisciplinary character of the concepts and methods and are taken from physics and finance. Due to its interdisciplinary character and choice of topics, the book can show students and researchers in physics how models and techniques used in their field can be translated into and applied in the field of finance and risk-management. On the other hand, a practitioner from the field of finance will find models and approaches recently developed in the emerging field of econophysics for understanding the stochastic price behavior of financial assets.
Download or read book Gibbs Measures On Cayley Trees written by Utkir A Rozikov and published by World Scientific. This book was released on 2013-07-11 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to present systematically all known mathematical results on Gibbs measures on Cayley trees (Bethe lattices).The Gibbs measure is a probability measure, which has been an important object in many problems of probability theory and statistical mechanics. It is the measure associated with the Hamiltonian of a physical system (a model) and generalizes the notion of a canonical ensemble. More importantly, when the Hamiltonian can be written as a sum of parts, the Gibbs measure has the Markov property (a certain kind of statistical independence), thus leading to its widespread appearance in many problems outside of physics such as biology, Hopfield networks, Markov networks, and Markov logic networks. Moreover, the Gibbs measure is the unique measure that maximizes the entropy for a given expected energy.The method used for the description of Gibbs measures on Cayley trees is the method of Markov random field theory and recurrent equations of this theory, but the modern theory of Gibbs measures on trees uses new tools such as group theory, information flows on trees, node-weighted random walks, contour methods on trees, and nonlinear analysis. This book discusses all the mentioned methods, which were developed recently.
Download or read book Statistical Mechanics of Lattice Systems written by Sacha Friedli and published by Cambridge University Press. This book was released on 2017-11-23 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.
Download or read book Gibbs Measures and Phase Transitions written by Hans-Otto Georgii and published by Walter de Gruyter. This book was released on 2011-05-31 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is much more than an introduction to the subject of its title. It covers in depth a broad range of topics in the mathematical theory of phase transition in statistical mechanics and as an up to date reference in its chosen topics it is a work of outstanding scholarship. It is in fact one of the author's stated aims that this comprehensive monograph should serve both as an introductory text and as a reference for the expert. In its latter function it informs the reader about the state of the art in several directions. It is introductory in the sense that it does not assume any prior knowledge of statistical mechanics and is accessible to a general readership of mathematicians with a basic knowledge of measure theory and probability. As such it should contribute considerably to the further growth of the already lively interest in statistical mechanics on the part of probabilists and other mathematicians." Fredos Papangelou, Zentralblatt MATH The second edition has been extended by a new section on large deviations and some comments on the more recent developments in the area.
Download or read book The Random Cluster Model written by Geoffrey R. Grimmett and published by Springer Science & Business Media. This book was released on 2006-12-13 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The random-cluster model has emerged as a key tool in the mathematical study of ferromagnetism. It may be viewed as an extension of percolation to include Ising and Potts models, and its analysis is a mix of arguments from probability and geometry. The Random-Cluster Model contains accounts of the subcritical and supercritical phases, together with clear statements of important open problems. The book includes treatment of the first-order (discontinuous) phase transition.
Download or read book Essentials of Stochastic Processes written by Richard Durrett and published by Springer. This book was released on 2016-11-07 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Download or read book Stochastic Processes Mathematics and Physics written by Sergio Albeverio and published by Springer. This book was released on 2006-11-14 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Dirichlet Forms and Stochastic Processes written by Zhiming Ma and published by Walter de Gruyter. This book was released on 2011-06-24 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Download or read book Combinatorial Stochastic Processes written by Jim Pitman and published by Springer Science & Business Media. This book was released on 2006-05-11 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this text is to bring graduate students specializing in probability theory to current research topics at the interface of combinatorics and stochastic processes. There is particular focus on the theory of random combinatorial structures such as partitions, permutations, trees, forests, and mappings, and connections between the asymptotic theory of enumeration of such structures and the theory of stochastic processes like Brownian motion and Poisson processes.
Download or read book Feynman Kac Type Formulae and Gibbs Measures written by József Lörinczi and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-01-20 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second updated and extended edition of the successful book on Feynman-Kac theory. It offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. The first volume concentrates on Feynman-Kac-type formulae and Gibbs measures.
Download or read book Stochastic Processes and Functional Analysis written by Jerome Goldstein and published by CRC Press. This book was released on 2020-09-23 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Covers the areas of modern analysis and probability theory. Presents a collection of papers given at the Festschrift held in honor of the 65 birthday of M. M. Rao, whose prolific published research includes the well-received Marcel Dekker, Inc. books Theory of Orlicz Spaces and Conditional Measures and Applications. Features previously unpublished research articles by a host of internationally recognized scholars."
Download or read book Interacting Stochastic Systems written by Jean-Dominique Deuschel and published by Springer Science & Business Media. This book was released on 2005-12-05 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Core papers emanating from the research network, DFG-Schwerpunkt: Interacting stochastic systems of high complexity.
Download or read book Lectures on Probability Theory and Statistics written by Evarist Giné and published by Springer. This book was released on 2006-11-14 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nur Contents aufnehmen
Download or read book Stochastic Processes Physics And Geometry Ii Proceedings Of The Iii International Conference written by Sergio Albeverio and published by World Scientific. This book was released on 1995-02-17 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: As was already evident from the previous two meetings, the theory of stochastic processes, the study of geometrical structures, and the investigation of certain physical problems are inter-related. In fact the trend in recent years has been towards stronger interactions between these areas. As a result, a large component of the contributions is concerned with the theory of stochastic processes, quantum theory, and their relations.
Download or read book The Statistical Mechanics of Quantum Lattice Systems written by and published by European Mathematical Society. This book was released on 2009 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum statistical mechanics plays a major role in many fields such as thermodynamics, plasma physics, solid-state physics, and the study of stellar structure. While the theory of quantum harmonic oscillators is relatively simple, the case of anharmonic oscillators, a mathematical model of a localized quantum particle, is more complex and challenging. Moreover, infinite systems of interacting quantum anharmonic oscillators possess interesting ordering properties with respect to quantum stabilization. This book presents a rigorous approach to the statistical mechanics of such systems, in particular with respect to their actions on a crystal lattice. The text is addressed to both mathematicians and physicists, especially those who are concerned with the rigorous mathematical background of their results and the kind of problems that arise in quantum statistical mechanics. The reader will find here a concise collection of facts, concepts, and tools relevant for the application of path integrals and other methods based on measure and integration theory to problems of quantum physics, in particular the latest results in the mathematical theory of quantum anharmonic crystals. The methods developed in the book are also applicable to other problems involving infinitely many variables, for example, in biology and economics.