EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Stochastic Partial Differential Equations  Second Edition

Download or read book Stochastic Partial Differential Equations Second Edition written by Pao-Liu Chow and published by CRC Press. This book was released on 2014-12-10 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore Theory and Techniques to Solve Physical, Biological, and Financial Problems Since the first edition was published, there has been a surge of interest in stochastic partial differential equations (PDEs) driven by the Lévy type of noise. Stochastic Partial Differential Equations, Second Edition incorporates these recent developments and improves the presentation of material. New to the Second Edition Two sections on the Lévy type of stochastic integrals and the related stochastic differential equations in finite dimensions Discussions of Poisson random fields and related stochastic integrals, the solution of a stochastic heat equation with Poisson noise, and mild solutions to linear and nonlinear parabolic equations with Poisson noises Two sections on linear and semilinear wave equations driven by the Poisson type of noises Treatment of the Poisson stochastic integral in a Hilbert space and mild solutions of stochastic evolutions with Poisson noises Revised proofs and new theorems, such as explosive solutions of stochastic reaction diffusion equations Additional applications of stochastic PDEs to population biology and finance Updated section on parabolic equations and related elliptic problems in Gauss–Sobolev spaces The book covers basic theory as well as computational and analytical techniques to solve physical, biological, and financial problems. It first presents classical concrete problems before proceeding to a unified theory of stochastic evolution equations and describing applications, such as turbulence in fluid dynamics, a spatial population growth model in a random environment, and a stochastic model in bond market theory. The author also explores the connection of stochastic PDEs to infinite-dimensional stochastic analysis.

Book Stochastic Stability of Differential Equations

Download or read book Stochastic Stability of Differential Equations written by Rafail Khasminskii and published by Springer Science & Business Media. This book was released on 2011-09-20 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of the first edition of the present volume in 1980, the stochastic stability of differential equations has become a very popular subject of research in mathematics and engineering. To date exact formulas for the Lyapunov exponent, the criteria for the moment and almost sure stability, and for the existence of stationary and periodic solutions of stochastic differential equations have been widely used in the literature. In this updated volume readers will find important new results on the moment Lyapunov exponent, stability index and some other fields, obtained after publication of the first edition, and a significantly expanded bibliography. This volume provides a solid foundation for students in graduate courses in mathematics and its applications. It is also useful for those researchers who would like to learn more about this subject, to start their research in this area or to study the properties of concrete mechanical systems subjected to random perturbations.

Book Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Download or read book Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA written by Elias T. Krainski and published by CRC Press. This book was released on 2018-12-07 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

Book Stochastic Numerics for Mathematical Physics

Download or read book Stochastic Numerics for Mathematical Physics written by Grigori N. Milstein and published by Springer Nature. This book was released on 2021-12-03 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a substantially revised and expanded edition reflecting major developments in stochastic numerics since the first edition was published in 2004. The new topics, in particular, include mean-square and weak approximations in the case of nonglobally Lipschitz coefficients of Stochastic Differential Equations (SDEs) including the concept of rejecting trajectories; conditional probabilistic representations and their application to practical variance reduction using regression methods; multi-level Monte Carlo method; computing ergodic limits and additional classes of geometric integrators used in molecular dynamics; numerical methods for FBSDEs; approximation of parabolic SPDEs and nonlinear filtering problem based on the method of characteristics. SDEs have many applications in the natural sciences and in finance. Besides, the employment of probabilistic representations together with the Monte Carlo technique allows us to reduce the solution of multi-dimensional problems for partial differential equations to the integration of stochastic equations. This approach leads to powerful computational mathematics that is presented in the treatise. Many special schemes for SDEs are presented. In the second part of the book numerical methods for solving complicated problems for partial differential equations occurring in practical applications, both linear and nonlinear, are constructed. All the methods are presented with proofs and hence founded on rigorous reasoning, thus giving the book textbook potential. An overwhelming majority of the methods are accompanied by the corresponding numerical algorithms which are ready for implementation in practice. The book addresses researchers and graduate students in numerical analysis, applied probability, physics, chemistry, and engineering as well as mathematical biology and financial mathematics.

Book Harnack Inequalities for Stochastic Partial Differential Equations

Download or read book Harnack Inequalities for Stochastic Partial Differential Equations written by Feng-Yu Wang and published by Springer Science & Business Media. This book was released on 2013-08-13 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​In this book the author presents a self-contained account of Harnack inequalities and applications for the semigroup of solutions to stochastic partial and delayed differential equations. Since the semigroup refers to Fokker-Planck equations on infinite-dimensional spaces, the Harnack inequalities the author investigates are dimension-free. This is an essentially different point from the above mentioned classical Harnack inequalities. Moreover, the main tool in the study is a new coupling method (called coupling by change of measures) rather than the usual maximum principle in the current literature.

Book An Introduction to Computational Stochastic PDEs

Download or read book An Introduction to Computational Stochastic PDEs written by Gabriel J. Lord and published by Cambridge University Press. This book was released on 2014-08-11 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a practical presentation of stochastic partial differential equations arising in physical applications and their numerical approximation.

Book Stochastic Differential Equations

Download or read book Stochastic Differential Equations written by Bernt Oksendal and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on a postgraduate course I gave on stochastic differential equations at Edinburgh University in the spring 1982. No previous knowledge about the subject was assumed, but the presen tation is based on some background in measure theory. There are several reasons why one should learn more about stochastic differential equations: They have a wide range of applica tions outside mathematics, there are many fruitful connections to other mathematical disciplines and the subject has a rapidly develop ing life of its own as a fascinating research field with many interesting unanswered questions. Unfortunately most of the literature about stochastic differential equations seems to place so much emphasis on rigor and complete ness that is scares many nonexperts away. These notes are an attempt to approach the subject from the nonexpert point of view: Not knowing anything (except rumours, maybe) about a subject to start with, what would I like to know first of all? My answer would be: 1) In what situations does the subject arise? 2) What are its essential features? 3) What are the applications and the connections to other fields? I would not be so interested in the proof of the most general case, but rather in an easier proof of a special case, which may give just as much of the basic idea in the argument. And I would be willing to believe some basic results without proof (at first stage, anyway) in order to have time for some more basic applications.

Book Stochastic Differential Equations and Applications

Download or read book Stochastic Differential Equations and Applications written by Avner Friedman and published by Academic Press. This book was released on 2014-06-20 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Differential Equations and Applications, Volume 1 covers the development of the basic theory of stochastic differential equation systems. This volume is divided into nine chapters. Chapters 1 to 5 deal with the basic theory of stochastic differential equations, including discussions of the Markov processes, Brownian motion, and the stochastic integral. Chapter 6 examines the connections between solutions of partial differential equations and stochastic differential equations, while Chapter 7 describes the Girsanov's formula that is useful in the stochastic control theory. Chapters 8 and 9 evaluate the behavior of sample paths of the solution of a stochastic differential system, as time increases to infinity. This book is intended primarily for undergraduate and graduate mathematics students.

Book Backward Stochastic Differential Equations

Download or read book Backward Stochastic Differential Equations written by Jianfeng Zhang and published by Springer. This book was released on 2017-08-22 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

Book Taylor Approximations for Stochastic Partial Differential Equations

Download or read book Taylor Approximations for Stochastic Partial Differential Equations written by Arnulf Jentzen and published by SIAM. This book was released on 2011-12-08 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic theory of Taylor expansions of evolutionary-type stochastic partial differential equations (SPDEs). The authors show how Taylor expansions can be used to derive higher order numerical methods for SPDEs, with a focus on pathwise and strong convergence. In the case of multiplicative noise, the driving noise process is assumed to be a cylindrical Wiener process, while in the case of additive noise the SPDE is assumed to be driven by an arbitrary stochastic process with H?lder continuous sample paths. Recent developments on numerical methods for random and stochastic ordinary differential equations are also included since these are relevant for solving spatially discretised SPDEs as well as of interest in their own right. The authors include the proof of an existence and uniqueness theorem under general assumptions on the coefficients as well as regularity estimates in an appendix.

Book Applied Stochastic Differential Equations

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Book Stochastic Integration and Differential Equations

Download or read book Stochastic Integration and Differential Equations written by Philip Protter and published by Springer. This book was released on 2013-12-21 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, the more general version of the Girsanov theorem due to Lenglart, the Kazamaki-Novikov criteria for exponential local martingales to be martingales, and a modern treatment of compensators. Chapter 4 treats sigma martingales (important in finance theory) and gives a more comprehensive treatment of martingale representation, including both the Jacod-Yor theory and Emery’s examples of martingales that actually have martingale representation (thus going beyond the standard cases of Brownian motion and the compensated Poisson process). New topics added include an introduction to the theory of the expansion of filtrations, a treatment of the Fefferman martingale inequality, and that the dual space of the martingale space H^1 can be identified with BMO martingales. Solutions to selected exercises are available at the web site of the author, with current URL http://www.orie.cornell.edu/~protter/books.html.

Book Stochastic Evolution Systems

Download or read book Stochastic Evolution Systems written by Boris L. Rozovsky and published by Springer. This book was released on 2018-10-03 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph, now in a thoroughly revised second edition, develops the theory of stochastic calculus in Hilbert spaces and applies the results to the study of generalized solutions of stochastic parabolic equations. The emphasis lies on second-order stochastic parabolic equations and their connection to random dynamical systems. The authors further explore applications to the theory of optimal non-linear filtering, prediction, and smoothing of partially observed diffusion processes. The new edition now also includes a chapter on chaos expansion for linear stochastic evolution systems. This book will appeal to anyone working in disciplines that require tools from stochastic analysis and PDEs, including pure mathematics, financial mathematics, engineering and physics.

Book Carleman Estimates for Second Order Partial Differential Operators and Applications

Download or read book Carleman Estimates for Second Order Partial Differential Operators and Applications written by Xiaoyu Fu and published by Springer Nature. This book was released on 2019-10-31 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a brief, self-contained introduction to Carleman estimates for three typical second order partial differential equations, namely elliptic, parabolic, and hyperbolic equations, and their typical applications in control, unique continuation, and inverse problems. There are three particularly important and novel features of the book. First, only some basic calculus is needed in order to obtain the main results presented, though some elementary knowledge of functional analysis and partial differential equations will be helpful in understanding them. Second, all Carleman estimates in the book are derived from a fundamental identity for a second order partial differential operator; the only difference is the choice of weight functions. Third, only rather weak smoothness and/or integrability conditions are needed for the coefficients appearing in the equations. Carleman Estimates for Second Order Partial Differential Operators and Applications will be of interest to all researchers in the field.

Book Partial Differential Equations

Download or read book Partial Differential Equations written by Lawrence C. Evans and published by American Mathematical Soc.. This book was released on 2010 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail...Evans' book is evidence of his mastering of the field and the clarity of presentation (Luis Caffarelli, University of Texas) It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ...Every graduate student in analysis should read it. (David Jerison, MIT) I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ...I am very happy with the preparation it provides my students. (Carlos Kenig, University of Chicago) Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ...An outstanding reference for many aspects of the field. (Rafe Mazzeo, Stanford University.

Book Stochastic Differential Equations  Backward SDEs  Partial Differential Equations

Download or read book Stochastic Differential Equations Backward SDEs Partial Differential Equations written by Etienne Pardoux and published by Springer. This book was released on 2014-06-24 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research monograph presents results to researchers in stochastic calculus, forward and backward stochastic differential equations, connections between diffusion processes and second order partial differential equations (PDEs), and financial mathematics. It pays special attention to the relations between SDEs/BSDEs and second order PDEs under minimal regularity assumptions, and also extends those results to equations with multivalued coefficients. The authors present in particular the theory of reflected SDEs in the above mentioned framework and include exercises at the end of each chapter. Stochastic calculus and stochastic differential equations (SDEs) were first introduced by K. Itô in the 1940s, in order to construct the path of diffusion processes (which are continuous time Markov processes with continuous trajectories taking their values in a finite dimensional vector space or manifold), which had been studied from a more analytic point of view by Kolmogorov in the 1930s. Since then, this topic has become an important subject of Mathematics and Applied Mathematics, because of its mathematical richness and its importance for applications in many areas of Physics, Biology, Economics and Finance, where random processes play an increasingly important role. One important aspect is the connection between diffusion processes and linear partial differential equations of second order, which is in particular the basis for Monte Carlo numerical methods for linear PDEs. Since the pioneering work of Peng and Pardoux in the early 1990s, a new type of SDEs called backward stochastic differential equations (BSDEs) has emerged. The two main reasons why this new class of equations is important are the connection between BSDEs and semilinear PDEs, and the fact that BSDEs constitute a natural generalization of the famous Black and Scholes model from Mathematical Finance, and thus offer a natural mathematical framework for the formulation of many new models in Finance.

Book Stochastic Equations in Infinite Dimensions

Download or read book Stochastic Equations in Infinite Dimensions written by Da Prato Guiseppe and published by . This book was released on 2013-11-21 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Ito and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations."