EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Stochastic Energetics

Download or read book Stochastic Energetics written by Ken Sekimoto and published by Springer. This book was released on 2010-03-10 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Energetics by now commonly designates the emerging field that bridges the gap between stochastic dynamical processes and thermodynamics. Triggered by the vast improvements in spatio-temporal resolution in nanotechnology, stochastic energetics develops a framework for quantifying individual realizations of a stochastic process on the mesoscopic scale of thermal fluctuations. This is needed to answer such novel questions as: Can one cool a drop of water by agitating an immersed nano-particle? How does heat flow if a Brownian particle pulls a polymer chain? Can one measure the free-energy of a system through a single realization of the associated stochastic process? This book will take the reader gradually from the basics to the applications: Part I provides the necessary background from stochastic dynamics (Langevin, master equation), Part II introduces how stochastic energetics describes such basic notions as heat and work on the mesoscopic scale, Part III details several applications, such as control and detection processes, as well as free-energy transducers. It aims in particular at researchers and graduate students working in the fields of nanoscience and technology.

Book Stochastic Dynamics and Energetics of Biomolecular Systems

Download or read book Stochastic Dynamics and Energetics of Biomolecular Systems written by Artem Ryabov and published by Springer. This book was released on 2015-11-28 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis both broadens and deepens our understanding of the Brownian world. It addresses new problems in diffusion theory that have recently attracted considerable attention, both from the side of nanotechnology and from the viewpoint of pure academic research. The author focusses on the difussion of interacting particles in restricted geometries and under externally controlled forces. These geometries serve, for example, to model ion transport through narrow channels in cell membranes or a Brownian particle diffusing in an optical trap, now a paradigm for both theory and experiment. The work is exceptional in obtaining explicit analytically formulated answers to such realistic, experimentally relevant questions. At the same time, with its detailed exposition of the problems and a complete set of references, it presents a clear and broadly accessible introduction to the domain. Many of the problem settings and the corresponding exact asymptotic laws are completely new in diffusion theory.

Book Thermodynamics and Statistical Mechanics of Small Systems

Download or read book Thermodynamics and Statistical Mechanics of Small Systems written by Andrea Puglisi and published by MDPI. This book was released on 2018-09-04 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Thermodynamics and Statistical Mechanics of Small Systems" that was published in Entropy

Book Statistical Mechanics for Athermal Fluctuation

Download or read book Statistical Mechanics for Athermal Fluctuation written by Kiyoshi Kanazawa and published by Springer. This book was released on 2017-11-20 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author investigates athermal fluctuation from the viewpoints of statistical mechanics in this thesis. Stochastic methods are theoretically very powerful in describing fluctuation of thermodynamic quantities in small systems on the level of a single trajectory and have been recently developed on the basis of stochastic thermodynamics. This thesis proposes, for the first time, a systematic framework to describe athermal fluctuation, developing stochastic thermodynamics for non-Gaussian processes, while thermal fluctuations are mainly addressed from the viewpoint of Gaussian stochastic processes in most of the conventional studies. First, the book provides an elementary introduction to the stochastic processes and stochastic thermodynamics. The author derives a Langevin-like equation with non-Gaussian noise as a minimal stochastic model for athermal systems, and its analytical solution by developing systematic expansions is shown as the main result. Furthermore, the a uthor shows a thermodynamic framework for such non-Gaussian fluctuations, and studies some thermodynamics phenomena, i.e. heat conduction and energy pumping, which shows distinct characteristics from conventional thermodynamics. The theory introduced in the book would be a systematic foundation to describe dynamics of athermal fluctuation quantitatively and to analyze their thermodynamic properties on the basis of stochastic methods.

Book Stochastic Systems with Time Delay

Download or read book Stochastic Systems with Time Delay written by Sarah A.M. Loos and published by Springer Nature. This book was released on 2021-09-18 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The nonequilibrium behavior of nanoscopic and biological systems, which are typically strongly fluctuating, is a major focus of current research. Lately, much progress has been made in understanding such systems from a thermodynamic perspective. However, new theoretical challenges emerge when the fluctuating system is additionally subject to time delay, e.g. due to the presence of feedback loops. This thesis advances this young and vibrant research field in several directions. The first main contribution concerns the probabilistic description of time-delayed systems; e.g. by introducing a versatile approximation scheme for nonlinear delay systems. Second, it reveals that delay can induce intriguing thermodynamic properties such as anomalous (reversed) heat flow. More generally, the thesis shows how to treat the thermodynamics of non-Markovian systems by introducing auxiliary variables. It turns out that delayed feedback is inextricably linked to nonreciprocal coupling, information flow, and to net energy input on the fluctuating level.

Book An Introduction to Stochastic Thermodynamics

Download or read book An Introduction to Stochastic Thermodynamics written by Naoto Shiraishi and published by Springer Nature. This book was released on 2023-05-08 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the fundamentals of stochastic thermodynamics, one of the most central subjects in non-equilibrium statistical mechanics. It also explores many recent advances, e.g., in information thermodynamics, the thermodynamic uncertainty relation, and the trade-off relation between efficiency and power. The content is divided into three main parts, the first of which introduces readers to fundamental topics in stochastic thermodynamics, e.g., the basics of stochastic processes, the fluctuation theorem and its variants, information thermodynamics, and large deviation theory. In turn, parts two and three explore advanced topics such as autonomous engines (engines not controlled externally) and finite speed engines, while also explaining the key concepts from recent stochastic thermodynamics theory that are involved. To fully benefit from the book, readers only need an undergraduate-level background in statistical mechanics and quantum mechanics; no background in information theory or stochastic processes is needed. Accordingly, the book offers a valuable resource for early graduate or higher-level readers who are unfamiliar with this subject but want to keep up with the cutting-edge research in this field. In addition, the author’s vivid descriptions interspersed throughout the book will help readers grasp ‘living’ research developments and begin their own research in this field.

Book Stochastic Thermodynamics

Download or read book Stochastic Thermodynamics written by Luca Peliti and published by Princeton University Press. This book was released on 2021-07-06 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive graduate-level introduction to stochastic thermodynamics Stochastic thermodynamics is a well-defined subfield of statistical physics that aims to interpret thermodynamic concepts for systems ranging in size from a few to hundreds of nanometers, the behavior of which is inherently random due to thermal fluctuations. This growing field therefore describes the nonequilibrium dynamics of small systems, such as artificial nanodevices and biological molecular machines, which are of increasing scientific and technological relevance. This textbook provides an up-to-date pedagogical introduction to stochastic thermodynamics, guiding readers from basic concepts in statistical physics, probability theory, and thermodynamics to the most recent developments in the field. Gradually building up to more advanced material, the authors consistently prioritize simplicity and clarity over exhaustiveness and focus on the development of readers’ physical insight over mathematical formalism. This approach allows the reader to grow as the book proceeds, helping interested young scientists to enter the field with less effort and to contribute to its ongoing vibrant development. Chapters provide exercises to complement and reinforce learning. Appropriate for graduate students in physics and biophysics, as well as researchers, Stochastic Thermodynamics serves as an excellent initiation to this rapidly evolving field. Emphasizes a pedagogical approach to the subject Highlights connections with the thermodynamics of information Pays special attention to molecular biophysics applications Privileges physical intuition over mathematical formalism Solutions manual available on request for instructors adopting the book in a course

Book Statistical Mechanics in a Nutshell  Second Edition

Download or read book Statistical Mechanics in a Nutshell Second Edition written by Luca Peliti and published by Princeton University Press. This book was released on 2024-08-06 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Statistical Mechanics in a Nutshell offers a concise, self-contained advanced undergraduate to graduate level introduction to this rapidly developing field, requiring a background in elementary calculus and elementary mechanics. It starts with the basics, introduces the most important developments in classical statistical mechanics over the last thirty years, and guides readers to the very threshold of today's cutting-edge research. The author has revised the first 5 chapters (harmonizing the notation, improving the proofs, checking all exercises and adding a few additional interesting ones). He has also added a new chapter on stochastic thermodynamics, which finds its place after the 9th chapter. The appendices will also be completely rewritten, emphasizing the role of convexity and the Jensen inequality. Chapter 8 will be improved to include some important topics: namely, thermostats and fast algorithms. Chapter 9 will also be rewritten to modernize it and to transition to the new chapter on stochastic thermodynamics. Chapter 10 will be split in two, to focus on "disordered systems" and "complex systems," to emphasize applications (including neural networks and optimization algorithms), and to introduce some fundamental techniques (like the cavity method and message passing) at an elementary level. The goal of the new edition is to help the reader find her/his way into and through the vast, recent literature concerning statistical mechanics and to build a sense of the many fields in which the discipline has recently been applied"--

Book The Statistical Mechanics of Irreversible Phenomena

Download or read book The Statistical Mechanics of Irreversible Phenomena written by Pierre Gaspard and published by Cambridge University Press. This book was released on 2022-07-28 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and self-contained overview of recent progress in nonequilibrium statistical mechanics, in particular, the discovery of fluctuation relations and other time-reversal symmetry relations. The significance of these advances is that nonequilibrium statistical physics is no longer restricted to the linear regimes close to equilibrium, but extends to fully nonlinear regimes. These important new results have inspired the development of a unifying framework for describing both the microscopic dynamics of collections of particles, and the macroscopic hydrodynamics and thermodynamics of matter itself. The book discusses the significance of this theoretical framework in relation to a broad range of nonequilibrium processes, from the nanoscale to the macroscale, and is essential reading for researchers and graduate students in statistical physics, theoretical chemistry and biological physics.

Book Non equilibrium Energy Transformation Processes

Download or read book Non equilibrium Energy Transformation Processes written by Viktor Holubec and published by Springer. This book was released on 2014-05-22 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: Various experimental techniques have been advanced in recent years to measure non-equilibrium energy transformations on the microscopic scale of single molecules. In general, the systems studied in the corresponding experiments are exposed to strong thermal fluctuations and thus the relevant energetic variables such as work and heat become stochastic. This thesis addresses challenging theoretical problems in this active field of current research: 1) Exact analytical solutions of work and heat distributions for isothermal non-equilibrium processes in suitable models are obtained; 2) Corresponding solutions for cyclic processes involving two different heat reservoirs are found; 3) Optimization of periodic driving protocols for such cyclic processes with respect to maximal output power, efficiency and minimal power fluctuations is studied. The exact solutions for work and heat distributions provide a reference for theoretical investigations of more complicated models, giving insight into the structure of the tail of work distributions and serving as valuable test cases for simulations of the underlying stochastic processes.

Book Irreversibility and Dissipation in Microscopic Systems

Download or read book Irreversibility and Dissipation in Microscopic Systems written by Édgar Roldán and published by Springer. This book was released on 2014-06-13 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: After an insightful introductory part on recent developments in the thermodynamics of small systems, the author presents his contribution to a long-standing problem, namely the connection between irreversibility and dissipation. He develops a method based on recent results on fluctuation theorems that is able to estimate dissipation using only information acquired in a single, sufficiently long, trajectory of a stationary nonequilibrium process. This part ends with a remarkable application of the method to the analysis of biological data, in this case, the fluctuations of a hair bundle. The third part studies the energetics of systems that undergo symmetry breaking transitions. These theoretical ideas lead to, among other things, an experimental realization of a Szilard engine using manipulated colloids. This work has the potential for important applications ranging from the analysis of biological media to the design of novel artificial nano-machines.

Book Nonequilibrium Statistical Physics of Small Systems

Download or read book Nonequilibrium Statistical Physics of Small Systems written by Rainer Klages and published by John Wiley & Sons. This book was released on 2013-03-15 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive picture of nonequilibrium phenomena in nanoscale systems. Written by internationally recognized experts in the field, this book strikes a balance between theory and experiment, and includes in-depth introductions to nonequilibrium fluctuation relations, nonlinear dynamics and transport, single molecule experiments, and molecular diffusion in nanopores. The authors explore the application of these concepts to nano- and biosystems by cross-linking key methods and ideas from nonequilibrium statistical physics, thermodynamics, stochastic theory, and dynamical systems. By providing an up-to-date survey of small systems physics, the text serves as both a valuable reference for experienced researchers and as an ideal starting point for graduate-level students entering this newly emerging research field.

Book Energy Limits in Computation

Download or read book Energy Limits in Computation written by Craig S. Lent and published by Springer. This book was released on 2018-08-03 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a single-source reference to the issues involved in the Landauer principle, which has gained new prominence recently, due to the large amount of heat generated by today’s computers. If Landauer’s principle is correct, there may be ways to build computers that dissipate far less power (corresponding to heat generated) than today’s computers. This book brings together all sides of the discussions regarding Landauer’s principle, both theoretical and experimental, empowering readers to gain better understanding of dissipation in computation, and the limits if any to progress in computation related to energy dissipation. It represents the best and most thorough examination of the important issue of Landauer’s principle that is available in one volume. Provides an in-depth investigation of the Landauer principle and how it relates to the possible existence of lower bounds on dissipation in computation; Gathers together both sides of the discussion: those who agree with Landauer and his conclusions, and those who think that Landauer was not correct, offering fresh perspective on the issues in the new light of experiments; Offers insight into the future of silicon CMOS and the limits if any to progress in computation related to energy dissipation.

Book Information Thermodynamics on Causal Networks and its Application to Biochemical Signal Transduction

Download or read book Information Thermodynamics on Causal Networks and its Application to Biochemical Signal Transduction written by Sosuke Ito and published by Springer. This book was released on 2016-07-16 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the author presents a general formalism of nonequilibrium thermodynamics with complex information flows induced by interactions among multiple fluctuating systems. The author has generalized stochastic thermodynamics with information by using a graphical theory. Characterizing nonequilibrium dynamics by causal networks, he has obtained a novel generalization of the second law of thermodynamics with information that is applicable to quite a broad class of stochastic dynamics such as information transfer between multiple Brownian particles, an autonomous biochemical reaction, and complex dynamics with a time-delayed feedback control. This study can produce further progress in the study of Maxwell’s demon for special cases. As an application to these results, information transmission and thermodynamic dissipation in biochemical signal transduction are discussed. The findings presented here can open up a novel biophysical approach to understanding information processing in living systems.

Book Principles of Brownian and Molecular Motors

Download or read book Principles of Brownian and Molecular Motors written by José Antonio Fornés and published by Springer Nature. This book was released on 2021-02-04 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular motors convert chemical energy (typically from ATP hydrolysis) to directed motion and mechanical work. Biomolecular motors are proteins able of converting chemical energy into mechanical motion and force. Because of their dimension, the many small parts that make up molecular motors must operate at energies only a few times greater than those of the thermal baths. The description of molecular motors must be stochastic in nature. Their actions are often described in terms of Brownian Ratchets mechanisms. In order to describe the principles used in their movement, we need to use the tools that theoretical physics give us. In this book we centralize on the some physical mechanisms of molecular motors.

Book Experiments on the Thermodynamics of Information Processing

Download or read book Experiments on the Thermodynamics of Information Processing written by Momčilo Gavrilov and published by Springer. This book was released on 2017-08-01 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis reveals how the feedback trap technique, developed to trap small objects for biophysical measurement, could be adapted for the quantitative study of the thermodynamic properties of small systems. The experiments in this thesis are related to Maxwell’s demon, a hypothetical intelligent, “neat fingered” being that uses information to extract work from heat, apparently creating a perpetual-motion machine. The second law of thermodynamics should make that impossible, but how? That question has stymied physicists and provoked debate for a century and a half. The experiments in this thesis confirm a hypothesis proposed by Rolf Landauer over fifty years ago: that Maxwell’s demon would need to erase information, and that erasing information—resetting the measuring device to a standard starting state—requires dissipating as much energy as is gained. For his thesis work, the author used a “feedback trap” to study the motion of colloidal particles in “v irtual potentials” that may be manipulated arbitrarily. The feedback trap confines a freely diffusing particle in liquid by periodically measuring its position and applying an electric field to move it back to the origin.

Book The Energetics of Computing in Life and Machines

Download or read book The Energetics of Computing in Life and Machines written by Chris Kempes and published by Seminar. This book was released on 2018-09 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Why do computers use so much energy? What are the fundamental physical laws governing the relationship between the precise computation run by a system, whether artificial or natural, and how much energy that computation requires? This volume integrates concepts from diverse fields, cultivating a modern, nonequilibrium thermodynamics of computation.