EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Statistical Matching Meets Probabilistic Graphical Models

Download or read book Statistical Matching Meets Probabilistic Graphical Models written by Eva-Marie Endres and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hybrid Random Fields

Download or read book Hybrid Random Fields written by Antonino Freno and published by Springer Science & Business Media. This book was released on 2011-04-11 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives. -- Manfred Jaeger, Aalborg Universitet The book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. [...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it. -- Marco Gori, Università degli Studi di Siena Graphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.

Book Probabilistic Graphical Models

Download or read book Probabilistic Graphical Models written by Daphne Koller and published by MIT Press. This book was released on 2009-07-31 with total page 1268 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Book Learning in Graphical Models

Download or read book Learning in Graphical Models written by M. I. Jordan and published by . This book was released on 2014-01-15 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Probabilistic Graphical Models

Download or read book Advances in Probabilistic Graphical Models written by Peter Lucas and published by Springer. This book was released on 2009-09-02 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together important topics of current research in probabilistic graphical modeling, learning from data and probabilistic inference. Coverage includes such topics as the characterization of conditional independence, the learning of graphical models with latent variables, and extensions to the influence diagram formalism as well as important application fields, such as the control of vehicles, bioinformatics and medicine.

Book Sampling Algorithms for Probabilistic Graphical Models with Determinism

Download or read book Sampling Algorithms for Probabilistic Graphical Models with Determinism written by Vibhav Giridhar Gogate and published by . This book was released on 2009 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed constraint and probabilistic graphical models occur quite frequently in many real world applications. Examples include: genetic linkage analysis, functional/software verification, target tracking and activity modeling. Query answering and in particular probabilistic inference on such graphical models is computationally hard often requiring exponential time in the worst case. Therefore in practice sampling algorithms are widely used for providing an approximate answer. In presence of deterministic dependencies or hard constraints, however, sampling has to overcome some principal challenges. In particular, importance sampling type schemes suffer from what is known as the rejection problem in that samples having zero weight may be generated with probability arbitrarily close to one yielding useless results. On the other hand, Markov Chain Monte Carlo techniques do not converge at all often yielding highly inaccurate estimates. In this thesis, we address these problems in a two fold manner. First, we utilize research done in constraint satisfaction and satisfiability communities for processing constraints to reduce or eliminate rejection. Second, mindful of the time overhead in sample generation due to determinism, we both make and utilize advances in statistical estimation theory to make the "most" out of the generated samples. Utilizing constraint satisfaction and satisfiability research, we propose two classes of sampling algorithms - one based on consistency enforcement and the other based on systematic search. The consistency enforcement class of algorithms work by shrinking the domains of random variables, by strengthening constraints, or by creating new ones, so that some or all zeros in the problem space can be removed. This improves convergence because of dimensionality reduction and also reduces rejection because many zero weight samples will not be generated. Our systematic search based techniques called SampleSearch manage the rejection problem by interleaving sampling with backtracking search. In this scheme, when a sample is supposed to be rejected, the algorithm continues instead with systematic backtracking search until a strictly positive-weight sample is generated. The strength of this scheme is that any state-of-the-art constraint satisfaction or propositional satisfiability search algorithm can be used with minor modifications. Through large scale experimental evaluation, we show that SampleSearch outperforms all state-of-the-art schemes when a significant amount of determinism is present in the graphical model. Subsequently, we combine SampleSearch with known statistical techniques such as Sampling Importance Resampling and Metropolis Hastings yielding efficient algorithms for sampling solutions from a uniform distribution over the solutions of a Boolean satisfiability formula. Unlike state-of-the-art algorithms, our SampleSearch-based algorithms guarantee convergence in the limit. As to statistical estimation, we make two distinct contributions. First, we propose several new statistical inequalities extending the one-sample Markov inequality to multiple samples which can be used in conjunction with SampleSearch to probabilistically lower bound likelihood tasks over mixed networks. Second, we present a novel framework called "AND/OR importance sampling" which generalizes the process of computing sample mean by exploiting AND/OR search spaces for graphical models. Specifically we provide a spectrum of AND/OR sample means which are defined on the same set of samples but derive different estimates trading variance with time. At one end is the AND/OR sample tree mean which has smaller variance than the conventional OR sample tree mean and has the same time complexity. At the other end is the AND/OR graph sample mean which has even lower variance but has higher time and space complexity. We demonstrate empirically that AND/OR sample means are far closer to the exact answer than the conventional OR sample mean.

Book Handbook of Graphical Models

Download or read book Handbook of Graphical Models written by Marloes Maathuis and published by CRC Press. This book was released on 2018-11-12 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference. While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art. Key features: * Contributions by leading researchers from a range of disciplines * Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications * Balanced coverage of concepts, theory, methods, examples, and applications * Chapters can be read mostly independently, while cross-references highlight connections The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.

Book Statistical Matching

    Book Details:
  • Author : Marcello D'Orazio
  • Publisher : John Wiley & Sons
  • Release : 2006-03-30
  • ISBN : 0470023546
  • Pages : 268 pages

Download or read book Statistical Matching written by Marcello D'Orazio and published by John Wiley & Sons. This book was released on 2006-03-30 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is more statistical data produced in today’s modern society than ever before. This data is analysed and cross-referenced for innumerable reasons. However, many data sets have no shared element and are harder to combine and therefore obtain any meaningful inference from. Statistical matching allows just that; it is the art of combining information from different sources (particularly sample surveys) that contain no common unit. In response to modern influxes of data, it is an area of rapidly growing interest and complexity. Statistical Matching: Theory and Practice introduces the basics of statistical matching, before going on to offer a detailed, up-to-date overview of the methods used and an examination of their practical applications. Presents a unified framework for both theoretical and practical aspects of statistical matching. Provides a detailed description covering all the steps needed to perform statistical matching. Contains a critical overview of the available statistical matching methods. Discusses all the major issues in detail, such as the Conditional Independence Assumption and the assessment of uncertainty. Includes numerous examples and applications, enabling the reader to apply the methods in their own work. Features an appendix detailing algorithms written in the R language. Statistical Matching: Theory and Practice presents a comprehensive exploration of an increasingly important area. Ideal for researchers in national statistics institutes and applied statisticians, it will also prove to be an invaluable text for scientists and researchers from all disciplines engaged in the multivariate analysis of data collected from different sources.

Book Graph Representation Learning

Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Book Cornell University Courses of Study

Download or read book Cornell University Courses of Study written by Cornell University and published by . This book was released on 2007 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Business Process Management

Download or read book Business Process Management written by Alistair Barros and published by Springer. This book was released on 2012-08-27 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 10th International Conference on Business Process Management, BPM 2012, held in Tallinn, Estonia, in September 2012. The 17 regular papers and 7 short papers included in this volume were carefully reviewed and selected from 126 submissions. The book also features two keynote lectures which were given at the conference. The papers are organized in topical sections named: process quality; conformance and compliance; BPM applications; process model analysis; BPM and the cloud; requirements and performance; process mining; and refactoring and optimization.

Book Pattern Recognition and Machine Learning

Download or read book Pattern Recognition and Machine Learning written by Christopher M. Bishop and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Book Machine Learning

    Book Details:
  • Author : Maria Johnsen
  • Publisher : Maria Johnsen
  • Release : 2024-07-06
  • ISBN :
  • Pages : 550 pages

Download or read book Machine Learning written by Maria Johnsen and published by Maria Johnsen. This book was released on 2024-07-06 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning has revolutionized industries, from healthcare to entertainment, by enhancing how we understand and interact with data. Despite its prevalence, mastering this field requires both theoretical knowledge and practical skills. This book bridges that gap, starting with foundational concepts and essential mathematics, then advancing through a wide range of algorithms and techniques. It covers supervised and unsupervised learning, neural networks, deep learning, and reinforcement learning, with clear explanations and practical examples. Real-world applications are highlighted through scenarios and case studies, demonstrating how to solve specific problems with machine learning. You'll find hands-on guides to popular tools and libraries like Python, Scikit-Learn, TensorFlow, Keras, and PyTorch, enabling you to build, evaluate, and deploy models effectively. The book explores cutting-edge topics like quantum machine learning and explainable AI, keeping you updated on the latest trends. Detailed case studies and capstone projects provide practical experience, guiding you through the entire machine learning process. This book, a labor of love born from extensive research and passion, aims to make machine learning accessible and engaging. Machine learning is about curiosity, creativity, and the pursuit of knowledge. Explore, experiment, and enjoy the journey. Thank you for choosing this book. I am excited to be part of your machine learning adventure and look forward to the incredible things you will achieve.

Book Statistical Modeling and Inference for Social Science

Download or read book Statistical Modeling and Inference for Social Science written by Sean Gailmard and published by Cambridge University Press. This book was released on 2014-06-09 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written specifically for graduate students and practitioners beginning social science research, Statistical Modeling and Inference for Social Science covers the essential statistical tools, models and theories that make up the social scientist's toolkit. Assuming no prior knowledge of statistics, this textbook introduces students to probability theory, statistical inference and statistical modeling, and emphasizes the connection between statistical procedures and social science theory. Sean Gailmard develops core statistical theory as a set of tools to model and assess relationships between variables - the primary aim of social scientists - and demonstrates the ways in which social scientists express and test substantive theoretical arguments in various models. Chapter exercises guide students in applying concepts to data, extending their grasp of core theoretical concepts. Students will also gain the ability to create, read and critique statistical applications in their fields of interest.

Book Regression Modeling Strategies

Download or read book Regression Modeling Strategies written by Frank E. Harrell and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many texts are excellent sources of knowledge about individual statistical tools, but the art of data analysis is about choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for dealing with nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. This text realistically deals with model uncertainty and its effects on inference to achieve "safe data mining".

Book The Evaluation of Forensic DNA Evidence

Download or read book The Evaluation of Forensic DNA Evidence written by National Research Council and published by National Academies Press. This book was released on 1996-12-12 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1992 the National Research Council issued DNA Technology in Forensic Science, a book that documented the state of the art in this emerging field. Recently, this volume was brought to worldwide attention in the murder trial of celebrity O. J. Simpson. The Evaluation of Forensic DNA Evidence reports on developments in population genetics and statistics since the original volume was published. The committee comments on statements in the original book that proved controversial or that have been misapplied in the courts. This volume offers recommendations for handling DNA samples, performing calculations, and other aspects of using DNA as a forensic toolâ€"modifying some recommendations presented in the 1992 volume. The update addresses two major areas: Determination of DNA profiles. The committee considers how laboratory errors (particularly false matches) can arise, how errors might be reduced, and how to take into account the fact that the error rate can never be reduced to zero. Interpretation of a finding that the DNA profile of a suspect or victim matches the evidence DNA. The committee addresses controversies in population genetics, exploring the problems that arise from the mixture of groups and subgroups in the American population and how this substructure can be accounted for in calculating frequencies. This volume examines statistical issues in interpreting frequencies as probabilities, including adjustments when a suspect is found through a database search. The committee includes a detailed discussion of what its recommendations would mean in the courtroom, with numerous case citations. By resolving several remaining issues in the evaluation of this increasingly important area of forensic evidence, this technical update will be important to forensic scientists and population geneticistsâ€"and helpful to attorneys, judges, and others who need to understand DNA and the law. Anyone working in laboratories and in the courts or anyone studying this issue should own this book.

Book Probabilistic Machine Learning

Download or read book Probabilistic Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2022-03-01 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.