Download or read book Static Compression of Energetic Materials written by Suhithi M. Peiris and published by Springer Science & Business Media. This book was released on 2009-01-03 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developing and testing novel energetic materials is an expanding branch of the materials sciences. Reaction, detonation or explosion of such materials invariably produce extremely high pressures and temperatures. To study the equations-of-state (EOS) of energetic materials in extreme regimes both shock and static high pressure studies are required. The present volume is an introduction and review of theoretical, experimental and numerical aspects of static compression of such materials. Chapter 1 introduces the basic experimental tool, the diamond anvil pressure cell and the observational techniques used with it such as optical microscopy, infrared spectrometry and x-ray diffraction. Chapter 2 outlines the principles of high-nitrogen energetic materials synthesis. Chapters 3 and 4, examine and compare various EOS formalisms and data fitting for crystalline and non-crystalline materials, respectively. Chapter 5 details the reaction kinetics of detonating energetic materials. Chapter 6 investigates the interplay between static and dynamic (shock) studies. Finally, Chapters 7 and 8 introduce numerical simulations: molecular dynamics of energetic materials under either hydrostatic or uni-axial stress and ab-inito treatments of defects in crystalline materials. This timely volume meets the growing demand for a state-of-the art introduction and review of the most relevant aspects of static compression of energetic materials and will be a valuable reference to researchers and scientists working in academic, industrial and governmental research laboratories.
Download or read book Static Compression of Energetic Materials written by Suhithi M. Peiris and published by Springer. This book was released on 2008-12-10 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developing and testing novel energetic materials is an expanding branch of the materials sciences. Reaction, detonation or explosion of such materials invariably produce extremely high pressures and temperatures. To study the equations-of-state (EOS) of energetic materials in extreme regimes both shock and static high pressure studies are required. The present volume is an introduction and review of theoretical, experimental and numerical aspects of static compression of such materials. Chapter 1 introduces the basic experimental tool, the diamond anvil pressure cell and the observational techniques used with it such as optical microscopy, infrared spectrometry and x-ray diffraction. Chapter 2 outlines the principles of high-nitrogen energetic materials synthesis. Chapters 3 and 4, examine and compare various EOS formalisms and data fitting for crystalline and non-crystalline materials, respectively. Chapter 5 details the reaction kinetics of detonating energetic materials. Chapter 6 investigates the interplay between static and dynamic (shock) studies. Finally, Chapters 7 and 8 introduce numerical simulations: molecular dynamics of energetic materials under either hydrostatic or uni-axial stress and ab-inito treatments of defects in crystalline materials. This timely volume meets the growing demand for a state-of-the art introduction and review of the most relevant aspects of static compression of energetic materials and will be a valuable reference to researchers and scientists working in academic, industrial and governmental research laboratories.
Download or read book Energetic Materials at Extreme Conditions written by David I.A. Millar and published by Springer Science & Business Media. This book was released on 2011-09-24 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: David I.A. Millar's thesis explores the effects of extreme conditions on energetic materials. His study identifies and structurally characterises new polymorphs obtained at high pressures and/or temperatures. The performance of energetic materials (pyrotechnics, propellants and explosives) can depend on a number of factors including sensitivity to detonation, detonation velocity, and chemical and thermal stability. Polymorphism and solid-state phase transitions may therefore have significant consequences for the performance and safety of energetic materials. In order to model the behaviour of these important materials effectively under operational conditions it is essential to obtain detailed structural information at a range of temperatures and pressures.
Download or read book Energetic Materials written by and published by Elsevier. This book was released on 2003-11-21 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an overview of current research and recent advances in the area of energetic materials, focusing on explosives and propellants. The contents and format reflect the fact that theory, experiment and computation are closely linked in this field. The challenge of developing energetic materials that are less sensitive to accidental stimuli continues to be of critical importance. This volume opens with discussions of some determinants of sensitivity and its correlations with various molecular and crystal properties. The next several chapters deal in considerable detail with different aspects and mechanisms of the initiation of detonation, and its quantitative description. The second half of this volume focuses upon combustion. Extensive studies model ignition and combustion, with applications to different propellants. The final chapter is an exhaustive computational treatment of the mechanism and kinetics of combustion initiation reactions of ammonium perchlorate. Overall, this volume illustrates the progress that has been made in the field of energetic materials and some of the areas of current activity. It also indicates the challenges involved in characterizing and understanding the properties and behaviour of these compounds. The work is a unique state-of-the-art treatment of the subject, written by pre-eminent researchers in the field. - Overall emphasis is on theory and computation, presented in the context of relevant experimental work - Presents a unique state-of-the-art treatment of the subject - Contributors are preeminent researchers in the field
Download or read book High Energy Density Materials written by Thomas M. Klapötke and published by Springer. This book was released on 2007-06-12 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Molecular Modeling of the Sensitivities of Energetic Materials written by Didier Mathieu and published by Elsevier. This book was released on 2022-04-01 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Modeling of the Sensitivities of Energetic Materials, Volume 22 introduces experimental aspects, explores the relationships between sensitivity, molecular structure and crystal structure, discusses insights from numerical simulations, and highlights applications of these approaches to the design of new materials. Providing practical guidelines for implementing predictive models and their application to the search for new compounds, this book is an authoritative guide to an exciting field of research that warrants a computer-aided approach for the investigation and design of safe and powerful explosives or propellants. Much recent effort has been put into modeling sensitivities, with most work focusing on impact sensitivity and leading to a lot of experimental data in this area. Models must therefore be developed to allow evaluation of significant properties from the structure of constitutive molecules. - Highlights a range of approaches for computational simulation and the importance of combining them to accurately understand or estimate different parameters - Provides an overview of experimental findings and knowledge in a quick and accessible format - Presents guidelines to implement sensitivity models using open-source python-related software, thus supporting easy implementation of flexible models and allowing fast assessment of hypotheses
Download or read book Energetic Polymers written by How Ghee Ang and published by John Wiley & Sons. This book was released on 2012-03-26 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This up-to-date overview provides the latest information on the performance, sensitivity, strength and processability aspects of propellants and explosive formulations, with the nature of polymer binder/plasticizer as the variable factor. Apart from applications, this monograph explores the principles behind energetic polymers, while discussing the synthetic routes and energetic characteristics of individual family of energetic polymers. Furthermore, a number of case studies illustrate the role of energetic polyerms on enhancing the performance of formulations as compared to their inert counterparts. The emphasis is on safety throughout, with practical guidance on how to safely handle and formulate energetic polymer based formulations. With the advent of a new generation of energetic polymers, this book is relevant to industry and defense organizations as well as for academic research.
Download or read book Energetic Materials written by Veera Boddu and published by CRC Press. This book was released on 2010-12-07 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to safety reasons, energetic materials are rarely studied at research facilities. Therefore, theoretical and empirical models are needed for studying the behavior of these materials. This book provides insight into the depth and breadth of theoretical and empirical models and experimental techniques being developed for energetic materials. It presents the latest research by US Department of Defense engineers and scientists, along with their academic and industrial research partners. Some of the topics and simulations discussed can be applied to other classes of chemical compounds, such as those used in the pharmaceutical industry.
Download or read book Molecular Spectroscopy of Dynamically Compressed Materials written by David S. Moore and published by Springer Nature. This book was released on 2022-07-04 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers historical and state-of-the-art molecular spectroscopy methods and applications in dynamic compression science, aimed at the upcoming generation in physical sciences involved in studies of materials at extremes. It begins with addressing the motivation for probing shock compressed molecular materials with spectroscopy and then reviews historical developments and the basics of the various spectroscopic methods that have been utilized. Introductory chapters are devoted to fundamentals of molecular spectroscopy, overviews of dynamic compression technologies, and diagnostics used to quantify the shock compression state during spectroscopy experiments. Subsequent chapters describe all the molecular spectroscopic methods used in shock compression research to date, including theory, experimental details for application to shocked materials, and difficulties that can be encountered. Each of these chapters also includes a section comparing static compression results. The last chapter offers an outlook for the future, which leads the next-generation readers to tackling persistent problems.
Download or read book Materials Under Extreme Conditions Molecular Crystals At High Pressure written by Vincenzo Schettino and published by World Scientific. This book was released on 2013-11-20 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-pressure materials research has been revolutionized in the past few years due to technological breakthroughs in the diamond anvil cell (DAC), shock wave compression and molecular dynamic simulation (MD) methods. The application of high pressure, especially together with high temperature, has revealed exciting modifications of physical and chemical properties even in the simplest molecular materials.Besides the fundamental importance of these studies to understand the composition and the dynamics of heart and planets' interior, new materials possessing peculiar characteristics of hardness and composition have been synthesized at very high pressure, while unexpected chemical reactions of simple molecules to polymers and amorphous compounds have been found at milder conditions.The variety of the phenomena observed in these extreme conditions and of the materials involved provides a common ground bridging scientific communities with different cultural and experimental backgrounds. This monograph will provide a timely opportunity to report on recent progress in the field.
Download or read book Experimental Mechanics of Composite Hybrid and Multifunctional Materials Volume 6 written by G P Tandon and published by Springer Science & Business Media. This book was released on 2013-08-28 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental Mechanics of Composite, Hybrid, and Multifunctional Materials: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, the sixth volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Characterization of Energy Storage Materials Microvascular & Natural Composites Nanocomposites for Multifunctional Performance Composite/Hybrid Characterization Using Digital Image Correlation Failure Behavior of Polymer Matrix Composites Non-Destructive Testing of Composites Composite Test Methods Joints/Bonded Composites
Download or read book Mechanics of Composite Hybrid and Multifunctional Materials Volume 5 written by Frank Gardea and published by Springer Nature. This book was released on with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Shock Phenomena in Granular and Porous Materials written by Tracy J. Vogler and published by Springer Nature. This book was released on 2019-09-04 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Granular forms of common materials such as metals and ceramics, sands and soils, porous energetic materials (explosives, reactive mixtures), and foams exhibit interesting behaviors due to their heterogeneity and critical length scale, typically commensurate with the grain or pore size. Under extreme conditions of impact, granular and porous materials display highly localized phenomena such as fracture, inelastic deformation, and the closure of voids, which in turn strongly influence the bulk response. Due to the complex nature of these interactions and the short time scales involved, computational methods have proven to be powerful tools to investigate these phenomena. Thus, the coupled use of experiment, theory, and simulation is critical to advancing our understanding of shock processes in initially porous and granular materials. This is a comprehensive volume on granular and porous materials for researchers working in the area of shock and impact physics. The book is divided into three sections, where the first presents the fundamentals of shock physics as it pertains to the equation of state, compaction, and strength properties of porous materials. Building on these fundamentals, the next section examines several applications where dynamic processes involving initially porous materials are prevalent, focusing on the areas of penetration, planetary impact, and reactive munitions. The final section provides a look at emerging areas in the field, where the expansion of experimental and computational capabilities are opening the door for new opportunities in the areas of advanced light sources, molecular dynamics modeling, and additively manufactured porous structures. By intermixing experiment, theory, and simulation throughout, this book serves as an excellent, up-to-date desk reference for those in the field of shock compression science of porous and granular materials.
Download or read book Materials under Extreme Loadings written by Eric Buzaud and published by John Wiley & Sons. This book was released on 2013-03-04 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent and cutting edge advances in our understanding of key aspects of the response of materials under extreme loads that take place during high velocity impact and penetration. The focus of the content is on the numerous challenges associated with characterization and modeling of complex interactions that occur during these highly dynamic events. The following specific topics, among others, are addressed: characterization of material behavior under extreme loadings (estimate of damage, effects related to moisture contents, large pressures, large strain rates, etc.); measurement of microstructural changes associated with damage and mesoscopic scale modeling; macroscopic modeling, using the framework of the theory of viscoplasticity and damage; modeling and simulation of localization, cracking, and dynamic fragmentation of materials; application to penetration mechanics and trajectory instabilities. The book gathers together selected papers based on work presented as invited lectures at the 2nd US-France symposium held on 28-30 May 2008 in Rocamadour, France. The conference was organized by Eric Buzaud (DGA, Centre d'Études de Gramat) under the auspices of the International Center for Applied Computational Mechanics (ICACM).
Download or read book Laser Ignition of Energetic Materials written by S Rafi Ahmad and published by John Wiley & Sons. This book was released on 2014-11-10 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book gives an introduction to energetic materials and lasers, properties of such materials and the current methods for initiating energetic materials. The following chapters and sections highlight the properties of lasers, and safety aspects of their application. It covers the properties of in-service energetic materials, and also materials with prospects of being used as insensitive ammunitions in future weapon or missiles systems or as detonators in civilian (mining) applications. Because of the diversity of the topics some sections will naturally separate into different levels of expertise and knowledge.
Download or read book Chemistry at Extreme Conditions written by M.R. Manaa and published by Elsevier. This book was released on 2005-03-02 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemistry at Extreme Conditions covers those chemical processes that occur in the pressure regime of 0.5–200 GPa and temperature range of 500–5000 K and includes such varied phenomena as comet collisions, synthesis of super-hard materials, detonation and combustion of energetic materials, and organic conversions in the interior of planets. The book provides an insight into this active and exciting field of research. Written by top researchers in the field, the book covers state of the art experimental advances in high-pressure technology, from shock physics to laser-heating techniques to study the nature of the chemical bond in transient processes. The chapters have been conventionally organised into four broad themes of applications: biological and bioinorganic systems; Experimental works on the transformations in small molecular systems; Theoretical methods and computational modeling of shock-compressed materials; and experimental and computational approaches in energetic materials research.* Extremely practical book containing up-to-date research in high-pressure science * Includes chapters on recent advances in computer modelling* Review articles can be used as reference guide
Download or read book Proceedings written by and published by . This book was released on 1989 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: