EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mixed Finite Elements  Compatibility Conditions  and Applications

Download or read book Mixed Finite Elements Compatibility Conditions and Applications written by Daniele Boffi and published by Springer. This book was released on 2008-04-01 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the early 70's, mixed finite elements have been the object of a wide and deep study by the mathematical and engineering communities. The fundamental role of this method for many application fields has been worldwide recognized and its use has been introduced in several commercial codes. An important feature of mixed finite elements is the interplay between theory and application. Discretization spaces for mixed schemes require suitable compatibilities, so that simple minded approximations generally do not work and the design of appropriate stabilizations gives rise to challenging mathematical problems. This volume collects the lecture notes of a C.I.M.E. course held in Summer 2006, when some of the most world recognized experts in the field reviewed the rigorous setting of mixed finite elements and revisited it after more than 30 years of practice. Applications, in this volume, range from traditional ones, like fluid-dynamics or elasticity, to more recent and active fields, like electromagnetism.

Book Implementation of Finite Element Methods for Navier Stokes Equations

Download or read book Implementation of Finite Element Methods for Navier Stokes Equations written by F. Thomasset and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: In structure mechanics analysis, finite element methods are now well estab lished and well documented techniques; their advantage lies in a higher flexibility, in particular for: (i) The representation of arbitrary complicated boundaries; (ii) Systematic rules for the developments of stable numerical schemes ap proximating mathematically wellposed problems, with various types of boundary conditions. On the other hand, compared to finite difference methods, this flexibility is paid by: an increased programming complexity; additional storage require ment. The application of finite element methods to fluid mechanics has been lagging behind and is relatively recent for several types of reasons: (i) Historical reasons: the early methods were invented by engineers for the analysis of torsion, flexion deformation of bearns, plates, shells, etc ... (see the historics in Strang and Fix (1972) or Zienckiewicz (1977». (ii) Technical reasons: fluid flow problems present specific difficulties: strong gradients,l of the velocity or temperature for instance, may occur which a finite mesh is unable to properly represent; a remedy lies in the various upwind finite element schemes which recently turned up, and which are reviewed in chapter 2 (yet their effect is just as controversial as in finite differences). Next, waves can propagate (e.g. in ocean dynamics with shallowwaters equations) which will be falsely distorted by a finite non regular mesh, as Kreiss (1979) pointed out. We are concerned in this course with the approximation of incompressible, viscous, Newtonian fluids, i.e. governed by N avier Stokes equations.

Book Numerical Mathematics and Advanced Applications

Download or read book Numerical Mathematics and Advanced Applications written by Miloslav Feistauer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 873 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings collect the major part of the lectures given at ENU MATH2003, the European Conference on Numerical Mathematics and Ad vanced Applications, held in Prague, Czech Republic, from 18 August to 22 August, 2003. The importance of numerical and computational mathematics and sci entific computing is permanently growing. There is an increasing number of different research areas, where numerical simulation is necessary. Let us men tion fluid dynamics, continuum mechanics, electromagnetism, phase transi tion, cosmology, medicine, economics, finance, etc. The success of applications of numerical methods is conditioned by changing its basic instruments and looking for new appropriate techniques adapted to new problems as well as new computer architectures. The ENUMATH conferences were established in order to provide a fo rum for discussion of current topics of numerical mathematics. They seek to convene leading experts and young scientists with special emphasis on con tributions from Europe. Recent results and new trends are discussed in the analysis of numerical algorithms as well as in their applications to challenging scientific and industrial problems. The first ENUMATH conference was organized in Paris in 1995, then the series continued by the conferences in Heidelberg 1997, Jyvaskyla 1999 and Ischia Porto 2001. It was a great pleasure and honour for the Czech numerical community that it was decided at Ischia Porto to organize the ENUMATH2003 in Prague. It was the first time when this conference crossed the former Iron Courtain and was organized in a postsocialist country.

Book Stable Finite Elements for the Navier Stokes Equations

Download or read book Stable Finite Elements for the Navier Stokes Equations written by George J. Fix and published by . This book was released on 1981 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The use of arbitrary spaces to represent the velocities and pressures in the Navier-Stokes equations typically leads to unstable finite element approximations. We show in this paper that if spaces of piecewise polynomial functions are used and if the grid for the velocity field is sufficiently fine compared to the grid for the pressure, then the resulting finite element approximations are stable and converge at the optimal rates" -- abstract.

Book Finite Element Methods for Navier Stokes Equations

Download or read book Finite Element Methods for Navier Stokes Equations written by Vivette Girault and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The material covered by this book has been taught by one of the authors in a post-graduate course on Numerical Analysis at the University Pierre et Marie Curie of Paris. It is an extended version of a previous text (cf. Girault & Raviart [32J) published in 1979 by Springer-Verlag in its series: Lecture Notes in Mathematics. In the last decade, many engineers and mathematicians have concentrated their efforts on the finite element solution of the Navier-Stokes equations for incompressible flows. The purpose of this book is to provide a fairly comprehen sive treatment of the most recent developments in that field. To stay within reasonable bounds, we have restricted ourselves to the case of stationary prob lems although the time-dependent problems are of fundamental importance. This topic is currently evolving rapidly and we feel that it deserves to be covered by another specialized monograph. We have tried, to the best of our ability, to present a fairly exhaustive treatment of the finite element methods for inner flows. On the other hand however, we have entirely left out the subject of exterior problems which involve radically different techniques, both from a theoretical and from a practical point of view. Also, we have neither discussed the implemen tation of the finite element methods presented by this book, nor given any explicit numerical result. This field is extensively covered by Peyret & Taylor [64J and Thomasset [82].

Book Adaptive Stable Finite element Methods for the Compressible Navier Stokes Equations

Download or read book Adaptive Stable Finite element Methods for the Compressible Navier Stokes Equations written by Philip John Capon and published by . This book was released on 1996 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems involving fluid flow can now be simulated numerically, providing a useful predictive tool for a wide range of engineering applications. Of particular interest in this thesis are computational methods for solving the problem of compressible fluid flow around aerodynamic configurations. A finite element method is presented for solving the compressible Navier-Stokes equations in two dimensions on unstructured meshes. The method is stablized by the addition of a least-squares operator (an inexpensive simplification of the Galerkin least-squares method), leading to solutions free of spurious oscillations. Convergence to steady state is reached via a backward Euler time-stepping scheme, and the use of local time-steps allows convergence to be accelerated. The choice of both the nonlinear solver, which is employed to solve the algebraic system arising at each time-step, and the iterative method used within this solver, is fully discussed, along with an inexpensive technique for approximating the Jacobian matrix. In order to obtain accurate solutions more effectively, the idea of adapting the mesh is investigated, and two distinct methods of mesh refinement are described in detail. These are the addition of nodes to the mesh in regions determined by an error indicator (h - refinement) and the local repositioning of existing nodes using the value of this error indicator across neighbouring elements (r - refinement). As well as considering these adaptive techniques separately, we introduce an original algorithm which combines the two ideas, with results indicating that this combination is an effective approach. The example problems used consist mainly of steady transonic flow at low to moderate Reynolds numbers. Transient flow problems are also considered, and we examine the difficulties which occur when the method of lines is used as a solution technique and h-refinement (including derefinement of elements) is carried out.

Book Finite Element Methods for Fluids

Download or read book Finite Element Methods for Fluids written by Olivier Pironneau and published by . This book was released on 1989 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the formulation of problems in fuild mechanics and dynamics, and shows how they can be analyzed and resolved using finite element methods. This practical book also discusses the equations of fluid mechanics and investigates the problems to which these equations can be applied, as well as how they can be analyzed and solved. Contains illustrations of computer simulations using the methods described in the book and features numerous illustrations.

Book Finite Element Methods for Incompressible Flow Problems

Download or read book Finite Element Methods for Incompressible Flow Problems written by Volker John and published by Springer. This book was released on 2016-10-27 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.

Book Navier Stokes Equations

Download or read book Navier Stokes Equations written by Roger Temam and published by American Mathematical Soc.. This book was released on 2001-04-10 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1977, the book is devoted to the theory and numerical analysis of the Navier-Stokes equations for viscous incompressible fluid. On the theoretical side, results related to the existence, the uniqueness, and, in some cases, the regularity of solutions are presented. On the numerical side, various approaches to the approximation of Navier-Stokes problems by discretization are considered, such as the finite dereference method, the finite element method, and the fractional steps method. The problems of stability and convergence for numerical methods are treated as completely as possible. The new material in the present book (as compared to the preceding 1984 edition) is an appendix reproducing a survey article written in 1998. This appendix touches upon a few aspects not addressed in the earlier editions, in particular a short derivation of the Navier-Stokes equations from the basic conservation principles in continuum mechanics, further historical perspectives, and indications on new developments in the area. The appendix also surveys some aspects of the related Euler equations and the compressible Navier-Stokes equations. The book is written in the style of a textbook and the author has attempted to make the treatment self-contained. It can be used as a textbook or a reference book for researchers. Prerequisites for reading the book include some familiarity with the Navier-Stokes equations and some knowledge of functional analysis and Sololev spaces.

Book Projection and Quasi Compressibility Methods for Solving the Incompressible Navier Stokes Equations

Download or read book Projection and Quasi Compressibility Methods for Solving the Incompressible Navier Stokes Equations written by and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Projection methods had been introduced in the late sixties by A. Chorin and R. Teman to decouple the computation of velocity and pressure within the time-stepping for solving the nonstationary Navier-Stokes equations. Despite the good performance of projection methods in practical computations, their success remained somewhat mysterious as the operator splitting implicitly introduces a nonphysical boundary condition for the pressure. The objectives of this monograph are twofold. First, a rigorous error analysis is presented for existing projection methods by means of relating them to so-called quasi-compressibility methods (e.g. penalty method, pressure stabilzation method, etc.). This approach highlights the intrinsic error mechanisms of these schemes and explains the reasons for their limitations. Then, in the second part, more sophisticated new schemes are constructed and analyzed which are exempted from most of the deficiencies of the classical projection and quasi-compressibility methods. '... this book should be mandatory reading for applied mathematicians specializing in computational fluid dynamics.' J.-L.Guermond. Mathematical Reviews, Ann Arbor

Book Finite Element Methods for Navier Stokes Equations

Download or read book Finite Element Methods for Navier Stokes Equations written by Vivette Girault and published by Springer. This book was released on 1986 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Element Approximation of the Navier Stokes Equations

Download or read book Finite Element Approximation of the Navier Stokes Equations written by Vivette Girault and published by Springer. This book was released on 1979 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Element Approximation of the Navier Stokes Equations

Download or read book Finite Element Approximation of the Navier Stokes Equations written by Vivette Girault and published by . This book was released on 2014-09-01 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Element Methods and Navier Stokes Equations

Download or read book Finite Element Methods and Navier Stokes Equations written by Cornelis Cuvelier and published by . This book was released on 1986 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Element Methods for Flow Problems

Download or read book Finite Element Methods for Flow Problems written by Jean Donea and published by John Wiley & Sons. This book was released on 2003-06-02 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Die Finite-Elemente-Methode, eines der wichtigsten in der Technik verwendeten numerischen Näherungsverfahren, wird hier gründlich und gut verständlich, aber ohne ein Zuviel an mathematischem Formalismus abgehandelt. Insbesondere geht es um die Anwendung der Methode auf Strömungsprobleme. Alle wesentlichen aktuellen Forschungsergebnisse wurden in den Band aufgenommen; viele davon sind bisher nur verstreut in der Originalliteratur zu finden.

Book Automated Solution of Differential Equations by the Finite Element Method

Download or read book Automated Solution of Differential Equations by the Finite Element Method written by Anders Logg and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

Book Navier   Stokes Equations

Download or read book Navier Stokes Equations written by Roger Temam and published by Elsevier. This book was released on 2016-06-03 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: Navier-Stokes Equations: Theory and Numerical Analysis focuses on the processes, methodologies, principles, and approaches involved in Navier-Stokes equations, computational fluid dynamics (CFD), and mathematical analysis to which CFD is grounded. The publication first takes a look at steady-state Stokes equations and steady-state Navier-Stokes equations. Topics include bifurcation theory and non-uniqueness results, discrete inequalities and compactness theorems, existence and uniqueness theorems, discretization of Stokes equations, existence and uniqueness for the Stokes equations, and function spaces. The text then examines the evolution of Navier-Stokes equations, including linear case, compactness theorems, alternate proof of existence by semi-discretization, and discretization of the Navier-Stokes equations. The book ponders on the approximation of the Navier-Stokes equations by the projection and compressibility methods; properties of the curl operator and application to the steady-state Navier-Stokes equations; and implementation of non-conforming linear finite elements. The publication is a valuable reference for researchers interested in the theory and numerical analysis of Navier-Stokes equations.