EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Stability  Periodicity and Boundedness in Functional Dynamical Systems on Time Scales

Download or read book Stability Periodicity and Boundedness in Functional Dynamical Systems on Time Scales written by Murat Adıvar and published by Springer Nature. This book was released on 2020-04-23 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Motivated by recent increased activity of research on time scales, the book provides a systematic approach to the study of the qualitative theory of boundedness, periodicity and stability of Volterra integro-dynamic equations on time scales. Researchers and graduate students who are interested in the method of Lyapunov functions/functionals, in the study of boundedness of solutions, in the stability of the zero solution, or in the existence of periodic solutions should be able to use this book as a primary reference and as a resource of latest findings. This book contains many open problems and should be of great benefit to those who are pursuing research in dynamical systems or in Volterra integro-dynamic equations on time scales with or without delays. Great efforts were made to present rigorous and detailed proofs of theorems. The book should serve as an encyclopedia on the construction of Lyapunov functionals in analyzing solutions of dynamical systems on time scales. The book is suitable for a graduate course in the format of graduate seminars or as special topics course on dynamical systems. The book should be of interest to investigators in biology, chemistry, economics, engineering, mathematics and physics.

Book Advanced Differential Equations

Download or read book Advanced Differential Equations written by Youssef N. Raffoul and published by Academic Press. This book was released on 2022-04-13 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Differential Equations provides coverage of high-level topics in ordinary differential equations and dynamical systems. The book delivers difficult material in an accessible manner, utilizing easier, friendlier notations and multiple examples. Sections focus on standard topics such as existence and uniqueness for scalar and systems of differential equations, the dynamics of systems, including stability, with examples and an examination of the eigenvalues of an accompanying linear matrix, as well as coverage of existing literature. From the eigenvalues' approach, to coverage of the Lyapunov direct method, this book readily supports the study of stable and unstable manifolds and bifurcations. Additional sections cover the study of delay differential equations, extending from ordinary differential equations through the extension of Lyapunov functions to Lyapunov functionals. In this final section, the text explores fixed point theory, neutral differential equations, and neutral Volterra integro-differential equations. - Includes content from a class-tested over multiple years with advanced undergraduate and graduate courses - Presents difficult material in an accessible manner by utilizing easier, friendlier notations, multiple examples and thoughtful exercises of increasing difficulty - Provides content that is appropriate for advanced classes up to, and including, a two-semester graduate course in exploring the theory and applications of ordinary differential equations - Requires minimal background in real analysis and differential equations - Offers a partial solutions manual for student study

Book Difference Equations and Applications

Download or read book Difference Equations and Applications written by Youssef N. Raffoul and published by Elsevier. This book was released on 2024-10-24 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Difference Equations and Applications provides unique coverage of high-level topics in the application of difference equations and dynamical systems. The book begins with extensive coverage of the calculus of difference equations, including contemporary topics on l_p stability, exponential stability, and parameters that can be used to qualitatively study solutions to non-linear difference equations, including variations of parameters and equations with constant coefficients, before moving on to the Z-Transform and its various functions, scalings, and applications. It covers systems, Lyapunov functions, and stability, a subject rarely covered in competitor titles, before concluding with a comprehensive section on new variations of parameters. Exercises are provided after each section, ranging from an easy to medium level of difficulty. When finished, students are set up to conduct meaningful research in discrete dynamical systems. In summary, this book is a comprehensive resource that delves into the mathematical theory of difference equations while highlighting their practical applications in various dynamic systems. It is highly likely to be of interest to students, researchers, and professionals in fields where discrete modeling and analysis are essential. - Provides a class-tested resource used over multiple years with advanced undergraduate and graduate courses - Presents difficult material in an accessible manner by utilizing easy, friendly notations, multiple examples, and thoughtful exercises of increasing difficulty - Requires minimal background in real analysis and differential equations - Covers new and evolving topic areas, such as stability, and offers a partial solutions manual for in book exercises

Book Advances in Difference Equations and Discrete Dynamical Systems

Download or read book Advances in Difference Equations and Discrete Dynamical Systems written by Saber Elaydi and published by Springer. This book was released on 2017-11-13 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the 22nd International Conference on Difference Equations and Applications, held at Osaka Prefecture University, Osaka, Japan, in July 2016. The conference brought together both experts and novices in the theory and applications of difference equations and discrete dynamical systems. The volume features papers in difference equations and discrete dynamical systems with applications to mathematical sciences and, in particular, mathematical biology and economics. This book will appeal to researchers, scientists, and educators who work in the fields of difference equations, discrete dynamical systems, and their applications.

Book Difference Equations  Discrete Dynamical Systems and Applications

Download or read book Difference Equations Discrete Dynamical Systems and Applications written by Saber Elaydi and published by Springer. This book was released on 2019-06-29 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the proceedings of the 23rd International Conference on Difference Equations and Applications, ICDEA 2017, held at the West University of Timișoara, Romania, under the auspices of the International Society of Difference Equations (ISDE), July 24 - 28, 2017. It includes new and significant contributions in the field of difference equations, discrete dynamical systems and their applications in various sciences. Disseminating recent studies and related results and promoting advances, the book appeals to PhD students, researchers, educators and practitioners in the field.

Book Functional Dynamic Equations on Time Scales

Download or read book Functional Dynamic Equations on Time Scales written by Svetlin G. Georgiev and published by Springer. This book was released on 2019-05-03 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the qualitative theory of functional dynamic equations on time scales, providing an overview of recent developments in the field as well as a foundation to time scales, dynamic systems, and functional dynamic equations. It discusses functional dynamic equations in relation to mathematical physics applications and problems, providing useful tools for investigation for oscillations and nonoscillations of the solutions of functional dynamic equations on time scales. Practice problems are presented throughout the book for use as a graduate-level textbook and as a reference book for specialists of several disciplines, such as mathematics, physics, engineering, and biology.

Book Dynamic Equations on Time Scales

Download or read book Dynamic Equations on Time Scales written by Martin Bohner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.

Book Advances in Discrete Dynamical Systems  Difference Equations and Applications

Download or read book Advances in Discrete Dynamical Systems Difference Equations and Applications written by Saber Elaydi and published by Springer Nature. This book was released on 2023-03-25 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​This book comprises selected papers of the 26th International Conference on Difference Equations and Applications, ICDEA 2021, held virtually at the University of Sarajevo, Bosnia and Herzegovina, in July 2021. The book includes the latest and significant research and achievements in difference equations, discrete dynamical systems, and their applications in various scientific disciplines. The book is interesting for Ph.D. students and researchers who want to keep up to date with the latest research, developments, and achievements in difference equations, discrete dynamical systems, and their applications, the real-world problems.

Book Stability Regions of Nonlinear Dynamical Systems

Download or read book Stability Regions of Nonlinear Dynamical Systems written by Hsiao-Dong Chiang and published by Cambridge University Press. This book was released on 2015-08-13 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative treatment by leading researchers covering theory and optimal estimation, along with practical applications.

Book Dynamic Calculus and Equations on Time Scales

Download or read book Dynamic Calculus and Equations on Time Scales written by Svetlin G. Georgiev and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-09-18 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest advancements in time scale calculus are the focus of this book. New types of time-scale integral transforms are discussed in the book, along with how they can be used to solve dynamic equations. Novel numerical techniques for partial dynamic equations on time scales are described. New time scale inequalities for exponentially convex functions are introduced as well.

Book Dynamic Equations on Time Scales and Applications

Download or read book Dynamic Equations on Time Scales and Applications written by Ravi P Agarwal and published by CRC Press. This book was released on 2024-10-18 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the theory of dynamic equations on time scales and applications, providing an overview of recent developments in the foundations of the field as well as its applications. It discusses the recent results related to the qualitative properties of solutions like existence and uniqueness, stability, continuous dependence, controllability, oscillations, etc. Presents cutting-edge research trends of dynamic equations and recent advances in contemporary research on the topic of time scales Connects several new areas of dynamic equations on time scales with applications in different fields Includes mathematical explanation from the perspective of existing knowledge of dynamic equations on time scales Offers several new recently developed results, which are useful for the mathematical modeling of various phenomena Useful for several interdisciplinary fields like economics, biology, and population dynamics from the perspective of new trends The text is for postgraduate students, professionals, and academic researchers working in the fields of Applied Mathematics

Book Selected Topics in Almost Periodicity

Download or read book Selected Topics in Almost Periodicity written by Marko Kostić and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-11-22 with total page 734 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers uniformly recurrent solutions and c-almost periodic solutions of abstract Volterra integro-differential equations as well as various generalizations of almost periodic functions in Lebesgue spaces with variable coefficients. Treats multi-dimensional almost periodic type functions and their generalizations in adequate detail.

Book Qualitative Analysis of Large Scale Dynamical Systems

Download or read book Qualitative Analysis of Large Scale Dynamical Systems written by Michel and published by Academic Press. This book was released on 1977-08-24 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops a unified approach to qualitative analysis of large scale systems described by many diversified types of equations.

Book Advances in Dynamic Equations on Time Scales

Download or read book Advances in Dynamic Equations on Time Scales written by Martin Bohner and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.

Book Almost Periodicity  Chaos  and Asymptotic Equivalence

Download or read book Almost Periodicity Chaos and Asymptotic Equivalence written by Marat Akhmet and published by Springer. This book was released on 2019-06-20 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: The central subject of this book is Almost Periodic Oscillations, the most common oscillations in applications and the most intricate for mathematical analysis. Prof. Akhmet's lucid and rigorous examination proves these oscillations are a "regular" component of chaotic attractors. The book focuses on almost periodic functions, first of all, as Stable (asymptotically) solutions of differential equations of different types, presumably discontinuous; and, secondly, as non-isolated oscillations in chaotic sets. Finally, the author proves the existence of Almost Periodic Oscillations (asymptotic and bi-asymptotic) by asymptotic equivalence between systems. The book brings readers' attention to contemporary methods for considering oscillations as well as to methods with strong potential for study of chaos in the future. Providing three powerful instruments for mathematical research of oscillations where dynamics are observable and applied, the book is ideal for engineers as well as specialists in electronics, computer sciences, robotics, neural networks, artificial networks, and biology. Distinctively combines results and methods of the theory of differential equations with thorough investigation of chaotic dynamics with almost periodic ingredients; Provides all necessary mathematical basics in their most developed form, negating the need for any additional sources for readers to start work in the area; Presents a unique method of investigation of discontinuous almost periodic solutions in its unified form, employed to differential equations with different types of discontinuity; Develops the equivalence method to its ultimate effective state such that most important theoretical problems and practical applications can be analyzed by the method.

Book Complex Valued Neural Networks Systems with Time Delay

Download or read book Complex Valued Neural Networks Systems with Time Delay written by Ziye Zhang and published by Springer Nature. This book was released on 2022-11-05 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides up-to-date developments in the stability analysis and (anti-)synchronization control area for complex-valued neural networks systems with time delay. It brings out the characteristic systematism in them and points out further insight to solve relevant problems. It presents a comprehensive, up-to-date, and detailed treatment of dynamical behaviors including stability analysis and (anti-)synchronization control. The materials included in the book are mainly based on the recent research work carried on by the authors in this domain. The book is a useful reference for all those from senior undergraduates, graduate students, to senior researchers interested in or working with control theory, applied mathematics, system analysis and integration, automation, nonlinear science, computer and other related fields, especially those relevant scientific and technical workers in the research of complex-valued neural network systems, dynamic systems, and intelligent control theory.

Book Multiple Time Scale Dynamical Systems

Download or read book Multiple Time Scale Dynamical Systems written by Christopher K.R.T. Jones and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systems with sub-processes evolving on many different time scales are ubiquitous in applications: chemical reactions, electro-optical and neuro-biological systems, to name just a few. This volume contains papers that expose the state of the art in mathematical techniques for analyzing such systems. Recently developed geometric ideas are highlighted in this work that includes a theory of relaxation-oscillation phenomena in higher dimensional phase spaces. Subtle exponentially small effects result from singular perturbations implicit in certain multiple time scale systems. Their role in the slow motion of fronts, bifurcations, and jumping between invariant tori are all explored here. Neurobiology has played a particularly stimulating role in the development of these techniques and one paper is directed specifically at applying geometric singular perturbation theory to reveal the synchrony in networks of neural oscillators.