Download or read book Stability of Nonautonomous Differential Equations written by Luis Barreira and published by Springer. This book was released on 2007-09-26 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume covers the stability of nonautonomous differential equations in Banach spaces in the presence of nonuniform hyperbolicity. Topics under discussion include the Lyapunov stability of solutions, the existence and smoothness of invariant manifolds, and the construction and regularity of topological conjugacies. The exposition is directed to researchers as well as graduate students interested in differential equations and dynamical systems, particularly in stability theory.
Download or read book Ordinary Differential Equations and Stability Theory written by David A. Sanchez and published by Courier Dover Publications. This book was released on 2019-09-18 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations. The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.
Download or read book Stability and Bifurcation Theory for Non Autonomous Differential Equations written by Anna Capietto and published by Springer. This book was released on 2012-12-14 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the notes from five lecture courses devoted to nonautonomous differential systems, in which appropriate topological and dynamical techniques were described and applied to a variety of problems. The courses took place during the C.I.M.E. Session "Stability and Bifurcation Problems for Non-Autonomous Differential Equations," held in Cetraro, Italy, June 19-25 2011. Anna Capietto and Jean Mawhin lectured on nonlinear boundary value problems; they applied the Maslov index and degree-theoretic methods in this context. Rafael Ortega discussed the theory of twist maps with nonperiodic phase and presented applications. Peter Kloeden and Sylvia Novo showed how dynamical methods can be used to study the stability/bifurcation properties of bounded solutions and of attracting sets for nonautonomous differential and functional-differential equations. The volume will be of interest to all researchers working in these and related fields.
Download or read book Lyapunov Stability of Non autonomous Dynamical Systems written by David N. Cheban and published by Nova Science Publishers. This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The foundation of the modern theory of stability was created in the works of A Poincare and A M Lyapunov. The theory of the stability of motion has gained increasing significance in the last decade as is apparent from the large number of publications on the subject. A considerable part of these works are concerned with practical problems, especially problems from the area of controls and servo-mechanisms, and concrete problems from engineering, which first gave the decisive impetus for the expansion and modern development of stability theory. This book contains a systematic exposition of the elements of the asymptotic stability theory of general non-autonomous dynamical systems in metric spaces with an emphasis on the application for different classes of non-autonomous evolution equations (Ordinary Differential Equations (ODEs), Difference Equations (DEs), Functional-Differential Equations (FDEs), Semi-Linear Parabolic Equations etc). The basic results of this book are contained in the courses of lectures which the author has given during many years for the students of the State University of Moldova.This book is intended for mathematicians (scientists and university professors) who are working in the field of stability theory of differential/difference equations, dynamical systems and control theory. It would also be of use for the graduate and post graduate student who is interested in the theory of dynamical systems and its applications. The reader needs no deep knowledge of special branches of mathematics, although it should be easier for readers who know the fundamentals concepts of the theory of metric spaces, qualitative theory of differential/difference equations and dynamical systems.
Download or read book Dichotomies and Stability in Nonautonomous Linear Systems written by Yu. A. Mitropolsky and published by CRC Press. This book was released on 2002-10-10 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear nonautonomous equations arise as mathematical models in mechanics, chemistry, and biology. The investigation of bounded solutions to systems of differential equations involves some important and challenging problems of perturbation theory for invariant toroidal manifolds. This monograph is a detailed study of the application of Lyapunov func
Download or read book Stability of Motion written by A. M. Liapunov and published by Elsevier. This book was released on 2016-06-03 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics in Science and Engineering, Volume 30: Stability of Motion deals with the problem of stability of motion. This volume investigates the problem of stability of the unperturbed motion in cases such as the system of differential equations for the perturbed motion is autonomie and the characteristic equation of the linear system that gives the first approximation has a double zero root. When the order of the system is larger than two (n > 2), all the remaining roots have negative real parts. The double root corresponds to a multiple elementary divisor of the characteristic matrix. This book is a good reference for mathematicians, students, and specialists conducting work on the stability of motion.
Download or read book Nonautonomous Dynamical Systems written by Peter E. Kloeden and published by American Mathematical Soc.. This book was released on 2011-08-17 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.
Download or read book Nonuniform Hyperbolicity written by Luis Barreira and published by . This book was released on 2014-02-19 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained, comprehensive account of modern smooth ergodic theory, the mathematical foundation of deterministic chaos.
Download or read book An Introduction To Nonautonomous Dynamical Systems And Their Attractors written by Peter Kloeden and published by World Scientific. This book was released on 2020-11-25 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: The nature of time in a nonautonomous dynamical system is very different from that in autonomous systems, which depend only on the time that has elapsed since starting rather than on the actual time itself. Consequently, limiting objects may not exist in actual time as in autonomous systems. New concepts of attractors in nonautonomous dynamical system are thus required.In addition, the definition of a dynamical system itself needs to be generalised to the nonautonomous context. Here two possibilities are considered: two-parameter semigroups or processes and the skew product flows. Their attractors are defined in terms of families of sets that are mapped onto each other under the dynamics rather than a single set as in autonomous systems. Two types of attraction are now possible: pullback attraction, which depends on the behaviour from the system in the distant past, and forward attraction, which depends on the behaviour of the system in the distant future. These are generally independent of each other.The component subsets of pullback and forward attractors exist in actual time. The asymptotic behaviour in the future limit is characterised by omega-limit sets, in terms of which form what are called forward attracting sets. They are generally not invariant in the conventional sense, but are asymptotically invariant in general and, if the future dynamics is appropriately uniform, also asymptotically negatively invariant.Much of this book is based on lectures given by the authors in Frankfurt and Wuhan. It was written mainly when the first author held a 'Thousand Expert' Professorship at the Huazhong University of Science and Technology in Wuhan.
Download or read book Stability of Functional Differential Equations written by and published by Elsevier. This book was released on 1986-04-15 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the structure and stability properties of solutions of functional differential equations. Numerous examples of applications (such as feedback systrems with aftereffect, two-reflector antennae, nuclear reactors, mathematical models in immunology, viscoelastic bodies, aeroautoelastic phenomena and so on) are considered in detail. The development is illustrated by numerous figures and tables.
Download or read book Lyapunov Functionals and Stability of Stochastic Functional Differential Equations written by Leonid Shaikhet and published by Springer Science & Business Media. This book was released on 2013-03-29 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for difference equations with discrete and continuous time. The text begins with both a description and a delineation of the peculiarities of deterministic and stochastic functional differential equations. There follows basic definitions for stability theory of stochastic hereditary systems, and the formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of different mathematical models such as: • inverted controlled pendulum; • Nicholson's blowflies equation; • predator-prey relationships; • epidemic development; and • mathematical models that describe human behaviours related to addictions and obesity. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations is primarily addressed to experts in stability theory but will also be of interest to professionals and students in pure and computational mathematics, physics, engineering, medicine, and biology.
Download or read book Nonnegative and Compartmental Dynamical Systems written by Wassim M. Haddad and published by Princeton University Press. This book was released on 2010-01-04 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book provides the first unified framework for stability and dissipativity analysis and control design for nonnegative and compartmental dynamical systems, which play a key role in a wide range of fields, including engineering, thermal sciences, biology, ecology, economics, genetics, chemistry, medicine, and sociology. Using the highest standards of exposition and rigor, the authors explain these systems and advance the state of the art in their analysis and active control design. Nonnegative and Compartmental Dynamical Systems presents the most complete treatment available of system solution properties, Lyapunov stability analysis, dissipativity theory, and optimal and adaptive control for these systems, addressing continuous-time, discrete-time, and hybrid nonnegative system theory. This book is an indispensable resource for applied mathematicians, dynamical systems theorists, control theorists, and engineers, as well as for researchers and graduate students who want to understand the behavior of nonnegative and compartmental dynamical systems that arise in areas such as biomedicine, demographics, epidemiology, pharmacology, telecommunications, transportation, thermodynamics, networks, heat transfer, and power systems.
Download or read book Nonautonomous Bifurcation Theory written by Vasso Anagnostopoulou and published by Springer Nature. This book was released on 2023-05-31 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bifurcation theory is a major topic in dynamical systems theory with profound applications. However, in contrast to autonomous dynamical systems, it is not clear what a bifurcation of a nonautonomous dynamical system actually is, and so far, various different approaches to describe qualitative changes have been suggested in the literature. The aim of this book is to provide a concise survey of the area and equip the reader with suitable tools to tackle nonautonomous problems. A review, discussion and comparison of several concepts of bifurcation is provided, and these are formulated in a unified notation and illustrated by means of comprehensible examples. Additionally, certain relevant tools needed in a corresponding analysis are presented.
Download or read book Generalized Ordinary Differential Equations in Abstract Spaces and Applications written by Everaldo M. Bonotto and published by John Wiley & Sons. This book was released on 2021-09-15 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and Applications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.
Download or read book Dynamical Systems written by Lamberto Cesari and published by Academic Press. This book was released on 2014-05-10 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical Systems: An International Symposium, Volume 1 contains the proceedings of the International Symposium on Dynamical Systemsheld at Brown University in Providence, Rhode Island, on August 12-16, 1974. The symposium provided a forum for reviewing the theory of dynamical systems in relation to ordinary and functional differential equations, as well as the influence of this approach and the techniques of ordinary differential equations on research concerning certain types of partial differential equations and evolutionary equations in general. Comprised of 29 chapters, this volume begins with an introduction to some aspects of the qualitative theory of differential equations, followed by a discussion on the Lefschetz fixed-point formula. Nonlinear oscillations in the frame of alternative methods are then examined, along with topology and nonlinear boundary value problems. Subsequent chapters focus on bifurcation theory; evolution governed by accretive operators; topological dynamics and its relation to integral equations and non-autonomous systems; and non-controllability of linear time-invariant systems using multiple one-dimensional linear delay feedbacks. The book concludes with a description of sufficient conditions for a relaxed optimal control problem. This monograph will be of interest to students and practitioners in the field of applied mathematics.
Download or read book Nonoscillation Theory of Functional Differential Equations with Applications written by Ravi P. Agarwal and published by Springer Science & Business Media. This book was released on 2012-04-23 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types, equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.
Download or read book Random Dynamical Systems written by Ludwig Arnold and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first systematic presentation of the theory of dynamical systems under the influence of randomness, this book includes products of random mappings as well as random and stochastic differential equations. The basic multiplicative ergodic theorem is presented, providing a random substitute for linear algebra. On its basis, many applications are detailed. Numerous instructive examples are treated analytically or numerically.