EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Stability and Degradation of Organic and Polymer Solar Cells

Download or read book Stability and Degradation of Organic and Polymer Solar Cells written by Frederik C. Krebs and published by John Wiley & Sons. This book was released on 2012-04-02 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaics (OPV) are a new generation of solar cells with the potential to offer very short energy pay back times, mechanical flexibility and significantly lower production costs compared to traditional crystalline photovoltaic systems. A weakness of OPV is their comparative instability during operation and this is a critical area of research towards the successful development and commercialization of these 3rd generation solar cells. Covering both small molecule and polymer solar cells, Stability and Degradation of Organic and Polymer Solar Cells summarizes the state of the art understanding of stability and provides a detailed analysis of the mechanisms by which degradation occurs. Following an introductory chapter which compares different photovoltaic technologies, the book focuses on OPV degradation, discussing the origin and characterization of the instability and describing measures for extending the duration of operation. Topics covered include: Chemical and physical probes for studying degradation Imaging techniques Photochemical stability of OPV materials Degradation mechanisms Testing methods Barrier technology and applications Stability and Degradation of Organic and Polymer Solar Cells is an essential reference source for researchers in academia and industry, engineers and manufacturers working on OPV design, development and implementation.

Book Organic Solar Cells

    Book Details:
  • Author : Pankaj Kumar
  • Publisher : CRC Press
  • Release : 2016-10-03
  • ISBN : 1498723306
  • Pages : 325 pages

Download or read book Organic Solar Cells written by Pankaj Kumar and published by CRC Press. This book was released on 2016-10-03 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains detailed information on the types, structure, fabrication, and characterization of organic solar cells (OSCs). It discusses processes to improve efficiencies and the prevention of degradation in OSCs. It compares the cost-effectiveness of OSCs to those based on crystalline silicon and discusses ways to make OSCs more economical. This book provides a practical guide for the fabrication, processing, and characterization of OSCs and paves the way for further development in OSC technology.

Book Polymeric Solar Cells

Download or read book Polymeric Solar Cells written by Frederik C. Krebs and published by DEStech Publications, Inc. This book was released on 2010 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Book offers a comprehensive treatment of nonhybrid polymeric solar cells from the basic chemistry of donor and acceptor materials through device design, processing and manufacture. Written by a team of Europe-based experts, the text shows the steps and strategies of successfully moving from the science of solar cells to commercial device production. Chapters focus on technologies that lead to increased efficiencies, longer usable life and lower costs. Highlighted are ways to fabricate solar cells from a range of polymers and develop them into marketable commodities. Special consideration is given to solar cells as intellectual property.

Book Organic Solar Cells

Download or read book Organic Solar Cells written by Wallace C.H. Choy and published by Springer Science & Business Media. This book was released on 2012-11-19 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.

Book Stability and Degradation of Organic and Polymer Solar Cells

Download or read book Stability and Degradation of Organic and Polymer Solar Cells written by Frederik C. Krebs and published by Wiley. This book was released on 2012-04-23 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaics (OPV) are a new generation of solar cells with the potential to offer very short energy pay back times, mechanical flexibility and significantly lower production costs compared to traditional crystalline photovoltaic systems. A weakness of OPV is their comparative instability during operation and this is a critical area of research towards the successful development and commercialization of these 3rd generation solar cells. Covering both small molecule and polymer solar cells, Stability and Degradation of Organic and Polymer Solar Cells summarizes the state of the art understanding of stability and provides a detailed analysis of the mechanisms by which degradation occurs. Following an introductory chapter which compares different photovoltaic technologies, the book focuses on OPV degradation, discussing the origin and characterization of the instability and describing measures for extending the duration of operation. Topics covered include: Chemical and physical probes for studying degradation Imaging techniques Photochemical stability of OPV materials Degradation mechanisms Testing methods Barrier technology and applications Stability and Degradation of Organic and Polymer Solar Cells is an essential reference source for researchers in academia and industry, engineers and manufacturers working on OPV design, development and implementation.

Book Nanomaterials  Polymers and Devices

Download or read book Nanomaterials Polymers and Devices written by E. S. W. Kong and published by John Wiley & Sons. This book was released on 2015-04-13 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing an eclectic snapshot of the current state of the art and future implications of the field, Nanomaterials, Polymers, and Devices: Materials Functionalization and Device Fabrication presents topics grouped into three categorical focuses: The synthesis, mechanism and functionalization of nanomaterials, such as carbon nanotubes, graphene, silica, and quantum dots Various functional devices which properties and structures are tailored with emphasis on nanofabrication. Among discussed are light emitting diodes, nanophotonic, nano-optical, and photovoltaic devices Nanoelectronic devices, which include semiconductor, nanotube and nanowire-based electronics, single-walled carbon-nanotube based nanoelectronics, as well as thin-film transistors

Book Electrical Processes in Organic Thin Film Devices

Download or read book Electrical Processes in Organic Thin Film Devices written by Michael C. Petty and published by John Wiley & Sons. This book was released on 2022-01-24 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrical Processes in Organic Thin Film Devices A one-stop examination of fundamental electrical behaviour in organic electronic device architectures In Electrical Processes in Organic Thin Film Devices: From Bulk Materials to Nanoscale Architectures, distinguished researcher Michael C. Petty delivers an in-depth treatment of the electrical behaviour of organic electronic devices focused on first principles. The author describes the fundamental electrical behaviour of various device architectures and offers an introduction to the physical processes that play a role in the electrical conductivity of organic materials. Beginning with band theory, the text moves on to address the effects of thin film device architectures and nanostructures. The book discusses the applications to devices currently in the marketplace, like displays, as well as those under development (transistors, solar cells, and memories). Electrical Processes in Organic Thin Film Devices also describes emerging organic thin film architectures and explores the potential for single molecule electronics and biologically inspired devices. Finally, the book also includes: A detailed introduction to electronic and vibrational states in organic solids, including classical band theory, disordered semiconductors, and lattice vibrations Comprehensive explorations of electrical conductivity, including electronic and ionic processes, carrier drift, diffusion, the Boltzmann Transport Equation, excess carriers, recombination, doping, and superconductivity An overview of important electro-active organic materials, like molecular crystals, charge-transfer complexes, conductive polymers, carbon nanotubes, and graphene Practical considerations of defects and nanoscale phenomena, including transport processes in low-dimensional systems, surfaces and interface states In-depth examinations of metal contacts, including ohmic contacts, the Schottky Barrier, and metal/molecule contacts A systematic guide to the operating principles of metal/insulator/semiconductor structures and the field effect A set of problems (with solutions on-line) for each chapter of the book Perfect for electronics developers and researchers in both industry and academia who study and work with molecular and nanoscale electronics, Electrical Processes in Organic Thin Film Devices also deserves a place in the libraries of undergraduate and postgraduate students in courses on molecular electronics, organic electronics, and plastic electronics.

Book Organic Solar Cells

    Book Details:
  • Author : Barry P. Rand
  • Publisher : CRC Press
  • Release : 2014-08-26
  • ISBN : 9814463655
  • Pages : 812 pages

Download or read book Organic Solar Cells written by Barry P. Rand and published by CRC Press. This book was released on 2014-08-26 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaic (OPV) cells have the potential to make a significant contribution to the increasing energy needs of the future. In this book, 15 chapters written by selected experts explore the required characteristics of components present in an OPV device, such as transparent electrodes, electron- and hole-conducting layers, as well as electron donor and acceptor materials. Design, preparation, and evaluation of these materials targeting highest performance are discussed. This includes contributions on modeling down to the molecular level to device-level electrical and optical testing and modeling, as well as layer morphology control and characterization. The integration of the different components in device architectures suitable for mass production is described. Finally, the technical feasibility and economic viability of large-scale manufacturing using fast inexpensive roll-to-roll deposition technologies is assessed.

Book Organic and Hybrid Solar Cells

Download or read book Organic and Hybrid Solar Cells written by Lukas Schmidt-Mende and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-05-24 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the increasing world-energy demand there is a growing necessity for clean and renewable energy. The sun being one of the most abundant potential sources accounts for less than 1% of the global energy supply. The market for solar cells is one of the most strongly increasing markets, even though the prize of conventional solar cells is still quite high. New emerging technologies, such as organic and hybrid solar cells have the potential to decrease the price of solar energy drastically. This book offers an introduction to these new types of solar cells and discusses fabrication, different architectures and their device physics on the bases of the author's teaching course on a master degree level. A comparison with conventional solar cells will be given and the specialties of organic solar cells emphasized.

Book Conjugated Polymers

Download or read book Conjugated Polymers written by John R. Reynolds and published by CRC Press. This book was released on 2019-03-25 with total page 909 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers properties, processing, and applications of conducting polymers. It discusses properties and characterization, including photophysics and transport. It then moves to processing and morphology of conducting polymers, covering such topics as printing, thermal processing, morphology evolution, conducting polymer composites, thin films

Book Organic Solar Cells

Download or read book Organic Solar Cells written by Liming Ding and published by John Wiley & Sons. This book was released on 2022-02-09 with total page 988 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic Solar Cells A timely and singular resource on the latest advances in organic photovoltaics Organic photovoltaics are gaining widespread attention due to their solution processability, tunable electronic properties, low temperature manufacture, and cheap and light materials. Their wide range of potential applications may result in significant near-term commercialization of the technology. In Organic Solar Cells: Materials Design, Technology and Commercialization, renowned scientist Dr. Liming Ding delivers a comprehensive exploration of organic solar cells, including discussions of their key materials, mechanisms, molecular designs, stability features, and applications. The book presents the most state-of-the-art developments in the field alongside fulsome treatments of the commercialization potential of various organic solar cell technologies. The author also provides: Thorough introductions to fullerene acceptors, polymer donors, and non-fullerene small molecule acceptors Comprehensive explorations of p-type molecular photovoltaic materials and polymer-polymer solar cell materials, devices, and stability Practical discussions of electron donating ladder-type heteroacenes for photovoltaic applications In-depth examinations of chlorinated organic and single-component organic solar cells, as well as the morphological characterization and manipulation of organic solar cells Perfect for materials scientists, organic and solid-state chemists, and solid-state physicists, Organic Solar Cells: Materials Design, Technology and Commercialization will also earn a place in the libraries of surface chemists and physicists and electrical engineers.

Book Electronic Structure of   Conjugated Materials and Their Effect on Organic Photovoltaics

Download or read book Electronic Structure of Conjugated Materials and Their Effect on Organic Photovoltaics written by Chuanfei Wang and published by Linköping University Electronic Press. This book was released on 2017-11-15 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: The great tunability of structure and electronic properties of ?-conjugated organic molecules/polymers combined with other advantages such as light weight and flexibility etc., have made organic-based electronics the focus of an exciting still-growing field of physics and chemistry for more than half a century. The application of organic electronics has led to the appearance of wide range of organic electronic devices mainly including organic light emitting diodes (OLED), organic field effect transistors (OFET) and organic solar cells (OSC). The application of the organic electronic devices mainly is limited by two dominant parameters, i.e., their performance and stability. Up to date, OLED has been successfully commercialized in the market while the OSC are still on the way to commercialization hindered by low efficiency and inferior stability. Understanding the energy levels of organic materials and energy level alignment of the devices is crucial to control the efficiency and stability of the OSC. In this thesis, energy levels measured by different methods are studied to explore their relationship with device properties, and the strategies on how to design efficient and stable OSC based on energy level diagrams are provided. Cyclic Voltammetry (CV) is a traditional and widely used method to probe the energy levels of organic materials, although there is little consensus on how to relate the oxidation/reduction potential ((Eox/Ered) to the vacuum level. Ultraviolet Photoelectron Spectroscopy (UPS) can be used to directly detect vertical ionization potential (IP) of organic materials. In this thesis, a linear relationship of IP and Eox was found, with a slope equal to unity. The relationship provides for easy conversion of values obtained by the two techniques, enabling complementarily use in designing and fabricating efficient and stable OSC. A popular rule of thumb is that the offset between the LUMO levels of donor and acceptor should be 0.3 eV, according to which a binary solar cell with the minimum voltage losses around 0.49 V was designed here. Introduction of the ternary blend as active layer is an efficient way to improve both efficiency and stability of the OSC. Based on our studied energy-level diagram within the integer charge transfer (ICT) model, we designed ternary solar cells with enhanced open circuit voltage for the first time and improved thermal stability compared to reference binary ones. The ternary solar cell with minimum voltage losses was developed by combining two donor materials with same ionization potential and positive ICT energy while featuring complementary optical absorption. Furthermore, the fullerene acceptor was chosen so that the energy of the positive ICT state of the two donor polymers is equal to the energy of negative ICT state of the fullerene, which can enhance dissociation of all polymer donor and fullerene acceptor excitons and suppress bimolecular and trap-assistant recombination. Rapid development of non-fullerene acceptors in the last two years affords more recipes of designing both efficient and stabile OSC. We show in this thesis how non-fullerene acceptors successfully can be used to design ternary solar cells with both enhanced efficiency and thermal stability. Besides improving the efficiency of the devices, understanding of the stability and degradation mechanism is another key issue. The degradation of conjugated molecules/polymers often follow many complicated pathways and at the same time many factors for degradation are coupled with each other. Therefore, the degradation of non-fullerene acceptors was investigated in darkness by photoelectron spectroscopy in this thesis with the in-situ method of controlling exposure of O2 and water vapor separately.

Book Organic Solar Cells

Download or read book Organic Solar Cells written by Wallace C.H. Choy and published by Springer. This book was released on 2012-11-17 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.

Book Organic Solar Cells

Download or read book Organic Solar Cells written by Wolfgang Tress and published by Springer. This book was released on 2014-11-22 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author’s dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on the zinc phthalocyanine: C60 material system, are of general nature. They propose and demonstrate experimental approaches for getting a deeper understanding of the dominating processes in amorphous thin-film based solar cells in general. The main focus is on the interpretation of the current-voltage characteristics (J-V curve). This very standard measurement technique for a solar cell reflects the electrical processes in the device. Comparing experimental to simulation data, the author discusses the reasons for S-Shaped J-V curves, the role of charge carrier mobilities and energy barriers at interfaces, the dominating recombination mechanisms, the charge carrier generation profile, and other efficiency-limiting processes in organic solar cells. The book concludes with an illustrative guideline on how to identify reasons for changes in the J-V curve. This book is a suitable introduction for students in engineering, physics, material science, and chemistry starting in the field of organic or hybrid thin-film photovoltaics. It is just as valuable for professionals and experimentalists who analyze solar cell devices.

Book Organic and Hybrid Solar Cells

Download or read book Organic and Hybrid Solar Cells written by Hui Huang and published by Springer. This book was released on 2014-11-25 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.

Book Organic Solar Cells

    Book Details:
  • Author : Pankaj Kumar
  • Publisher : CRC Press
  • Release : 2016-10-03
  • ISBN : 1315353628
  • Pages : 452 pages

Download or read book Organic Solar Cells written by Pankaj Kumar and published by CRC Press. This book was released on 2016-10-03 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains detailed information on the types, structure, fabrication, and characterization of organic solar cells (OSCs). It discusses processes to improve efficiencies and the prevention of degradation in OSCs. It compares the cost-effectiveness of OSCs to those based on crystalline silicon and discusses ways to make OSCs more economical. This book provides a practical guide for the fabrication, processing, and characterization of OSCs and paves the way for further development in OSC technology.

Book Comprehensive Guide on Organic and Inorganic Solar Cells

Download or read book Comprehensive Guide on Organic and Inorganic Solar Cells written by Md. Akhtaruzzaman and published by Academic Press. This book was released on 2021-11-18 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Guide on Organic and Inorganic Solar Cells: Fundamental Concepts to Fabrication Methods is a one-stop, authoritative resource on all types of inorganic, organic and hybrid solar cells, including their theoretical background and the practical knowledge required for fabrication. With chapters rigorously dedicated to a particular type of solar cell, each subchapter takes a detailed look at synthesis recipes, deposition techniques, materials properties and their influence on solar cell performance, including advanced characterization methods with materials selection and experimental techniques. By addressing the evolution of solar cell technologies, second generation thin-film photovoltaics, organic solar cells, and finally, the latest hybrid organic-inorganic approaches, this book benefits students and researchers in solar cell technology to understand the similarities, differences, benefits and challenges of each device. Introduces the basic concepts of different photovoltaic cells to audiences from a wide variety of academic backgrounds Consists of working principles of a particular category of solar technology followed by dissection of every component within the architecture Crucial experimental procedures for the fabrication of solar cell devices are introduced, aiding picture practical application of the technology