EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book EUV Sources for Lithography

Download or read book EUV Sources for Lithography written by Vivek Bakshi and published by SPIE Press. This book was released on 2006 with total page 1104 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive volume, edited by a senior technical staff member at SEMATECH, is the authoritative reference book on EUV source technology. The volume contains 38 chapters contributed by leading researchers and suppliers in the EUV source field. Topics range from a state-of-the-art overview and in-depth explanation of EUV source requirements, to fundamental atomic data and theoretical models of EUV sources based on discharge-produced plasmas (DPP) and laser-produced plasmas, to a description of prominent DPP and LPP designs and other technologies for producing EUV radiation. Additional topics include EUV source metrology and components (collectors, electrodes), debris mitigation, and mechanisms of component erosion in EUV sources. The volume is intended to meet the needs of both practitioners of the technology and readers seeking an introduction to the subject.

Book Principles of Laser Plasmas

Download or read book Principles of Laser Plasmas written by George Bekefi and published by . This book was released on 1976 with total page 695 pages. Available in PDF, EPUB and Kindle. Book excerpt: Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.

Book Plasma Spectroscopy

    Book Details:
  • Author : Takashi Fujimoto
  • Publisher : Clarendon Press
  • Release : 2004-06-17
  • ISBN : 0191523895
  • Pages : 300 pages

Download or read book Plasma Spectroscopy written by Takashi Fujimoto and published by Clarendon Press. This book was released on 2004-06-17 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the characteristics of optical radiation, or a spectrum, emitted by various plasmas. In plasma, the same atomic species can produce quite different spectra, or colours, depending on the nature of the plasma. This book gives a theoretical framework by which a particular spectrum can be interpreted correctly and coherently. The uniqueness of the book lies in its comprehensive treatment of the intensity distribution of spectral lines and the population density distribution among the atomic levels in plasmas. It is intended to provide beginners with a good perspective of the field, laying out the physics in an extremely clear manner and starting from an elementary level. A useful feature of the book is the asterisked sections and chapters which can be skipped by readers who only wish to gain a quick and basic introduction to plasma spectroscopy. It will also be useful to researchers working actively in the field, acting as a guide for carrying out experiments and interpreting experimental observations.

Book X Rays and Extreme Ultraviolet Radiation

Download or read book X Rays and Extreme Ultraviolet Radiation written by David Attwood and published by Cambridge University Press. This book was released on 2017-02-16 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: With this fully updated second edition, readers will gain a detailed understanding of the physics and applications of modern X-ray and EUV radiation sources. Taking into account the most recent improvements in capabilities, coverage is expanded to include new chapters on free electron lasers (FELs), laser high harmonic generation (HHG), X-ray and EUV optics, and nanoscale imaging; a completely revised chapter on spatial and temporal coherence; and extensive discussion of the generation and applications of femtosecond and attosecond techniques. Readers will be guided step by step through the mathematics of each topic, with over 300 figures, 50 reference tables and 600 equations enabling easy understanding of key concepts. Homework problems, a solutions manual for instructors, and links to YouTube lectures accompany the book online. This is the 'go-to' guide for graduate students, researchers and industry practitioners interested in X-ray and EUV interaction with matter.

Book Modern Methods in Collisional Radiative Modeling of Plasmas

Download or read book Modern Methods in Collisional Radiative Modeling of Plasmas written by Yuri Ralchenko and published by Springer. This book was released on 2016-02-25 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a compact yet comprehensive overview of recent developments in collisional-radiative (CR) modeling of laboratory and astrophysical plasmas. It describes advances across the entire field, from basic considerations of model completeness to validation and verification of CR models to calculation of plasma kinetic characteristics and spectra in diverse plasmas. Various approaches to CR modeling are presented, together with numerous examples of applications. A number of important topics, such as atomic models for CR modeling, atomic data and its availability and quality, radiation transport, non-Maxwellian effects on plasma emission, ionization potential lowering, and verification and validation of CR models, are thoroughly addressed. Strong emphasis is placed on the most recent developments in the field, such as XFEL spectroscopy. Written by leading international research scientists from a number of key laboratories, the book offers a timely summary of the most recent progress in this area. It will be a useful and practical guide for students and experienced researchers working in plasma spectroscopy, spectra simulations, and related fields.

Book EUV Lithography

    Book Details:
  • Author : Vivek Bakshi
  • Publisher : SPIE Press
  • Release : 2009
  • ISBN : 0819469645
  • Pages : 704 pages

Download or read book EUV Lithography written by Vivek Bakshi and published by SPIE Press. This book was released on 2009 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Editorial Review Dr. Bakshi has compiled a thorough, clear reference text covering the important fields of EUV lithography for high-volume manufacturing. This book has resulted from his many years of experience in EUVL development and from teaching this subject to future specialists. The book proceeds from an historical perspective of EUV lithography, through source technology, optics, projection system design, mask, resist, and patterning performance, to cost of ownership. Each section contains worked examples, a comprehensive review of challenges, and relevant citations for those who wish to further investigate the subject matter. Dr. Bakshi succeeds in presenting sometimes unfamiliar material in a very clear manner. This book is also valuable as a teaching tool. It has become an instant classic and far surpasses others in the EUVL field. --Dr. Akira Endo, Chief Development Manager, Gigaphoton Inc. Description Extreme ultraviolet lithography (EUVL) is the principal lithography technology aiming to manufacture computer chips beyond the current 193-nm-based optical lithography, and recent progress has been made on several fronts: EUV light sources, optics, optics metrology, contamination control, masks and mask handling, and resists. This comprehensive volume is comprised of contributions from the world's leading EUVL researchers and provides all of the critical information needed by practitioners and those wanting an introduction to the field. Interest in EUVL technology continues to increase, and this volume provides the foundation required for understanding and applying this exciting technology. About the editor of EUV Lithography Dr. Vivek Bakshi previously served as a senior member of the technical staff at SEMATECH; he is now president of EUV Litho, Inc., in Austin, Texas.

Book Introduction to Plasma Spectroscopy

Download or read book Introduction to Plasma Spectroscopy written by Hans-Joachim Kunze and published by Springer Science & Business Media. This book was released on 2009-09-18 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although based on lectures given for graduate students and postgraduates starting in plasma physics, this concise introduction to the fundamental processes and tools is as well directed at established researchers who are newcomers to spectroscopy and seek quick access to the diagnostics of plasmas ranging from low- to high-density technical systems at low temperatures, as well as from low- to high-density hot plasmas. Basic ideas and fundamental concepts are introduced as well as typical instrumentation from the X-ray to the infrared spectral regions. Examples, techniques and methods illustrate the possibilities. This book directly addresses the experimentalist who actually has to carry out the experiments and their interpretation. For that reason about half of the book is devoted to experimental problems, the instrumentation, components, detectors and calibration.

Book Soft X Rays and Extreme Ultraviolet Radiation

Download or read book Soft X Rays and Extreme Ultraviolet Radiation written by David Attwood and published by Cambridge University Press. This book was released on 2007-02-22 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This detailed, comprehensive book describes the fundamental properties of soft X-rays and extreme ultraviolet (EUV) radiation and discusses their applications in a wide variety of fields, including EUV lithography for semiconductor chip manufacture and soft X-ray biomicroscopy. The author begins by presenting the relevant basic principles such as radiation and scattering, wave propagation, diffraction, and coherence. He then goes on to examine a broad range of phenomena and applications. The topics covered include spectromicroscopy, EUV astronomy, synchrotron radiation, and soft X-ray lasers. The author also provides a wealth of useful reference material such as electron binding energies, characteristic emission lines and photo-absorption cross-sections. The book will be of great interest to graduate students and researchers in engineering, physics, chemistry, and the life sciences. It will also appeal to practising engineers involved in semiconductor fabrication and materials science.

Book Short Wavelength Laboratory Sources

Download or read book Short Wavelength Laboratory Sources written by Davide Bleiner and published by Royal Society of Chemistry. This book was released on 2014-12-04 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our ability to manipulate short wavelength radiation (0.01-100nm, equivalent to 120keV-12eV) has increased significantly over the last three decades. This has lead to major advances in applications in a wide range of disciplines such as: the life and medical sciences, including cancer-related studies; environmental science, including studies of pollution and its effects; archaeology and other cultural heritage disciplines; and materials science. Although expansion in application areas is due largely to modern synchrotron sources, many applications will not become widespread, and therefore routinely available as analytical tools, if they are confined to synchrotrons. There is a need to develop bright but small and low cost X-ray sources, not to replace synchrotrons but to complement them and this book will look at how to facilitate these developments. Written by a distinguished team of international authors, this book is based on the COST Action MP0601: Short Wavelength Laboratory Sources. The contents are divided into five main sections. the introductory section provides a comprehensive introduction to the fundamentals of radiation, generation mechanisms and short wavelength laboratory sources. The middle sections focus on modelling and simulation, source development: improvement and characterisation and integrated systems: sources, optics and detectors. The final section looks at recent applications. Aimed at academic and industrial researchers in physical chemistry and chemical physics, the contents provides practical information about the implementation of short wavelength laboratory sources and their applications.

Book Vacuum Ultraviolet Spectroscopy I

Download or read book Vacuum Ultraviolet Spectroscopy I written by and published by Academic Press. This book was released on 1998-08-17 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is for practitioners, experimentalists, and graduate students in applied physics, particularly in the fields of atomic and molecular physics, who work with vacuum ultraviolet applications and are in need of choosing the best type of modern instrumentation. It provides first-hand knowledge of the state-of-the-art equipment sources and gives technical information on how to use it, along with a broad reference bibliography.Key Features* Aimed at experimentalists who are in need of choosing the best type of modern instrumentation in this applied field* Contains a detailed chapter on laboratory sources* Provides an up-to-date description of state-of-the-art equipment and techniques* Includes a broad reference bibliography

Book Nanoscale Photonic Imaging

Download or read book Nanoscale Photonic Imaging written by Tim Salditt and published by Springer Nature. This book was released on 2020-06-09 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.

Book Nanolithography

Download or read book Nanolithography written by M Feldman and published by Woodhead Publishing. This book was released on 2014-02-13 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated circuits, and devices fabricated using the techniques developed for integrated circuits, have steadily gotten smaller, more complex, and more powerful. The rate of shrinking is astonishing – some components are now just a few dozen atoms wide. This book attempts to answer the questions, "What comes next? and "How do we get there?Nanolithography outlines the present state of the art in lithographic techniques, including optical projection in both deep and extreme ultraviolet, electron and ion beams, and imprinting. Special attention is paid to related issues, such as the resists used in lithography, the masks (or lack thereof), the metrology needed for nano-features, modeling, and the limitations caused by feature edge roughness. In addition emerging technologies are described, including the directed assembly of wafer features, nanostructures and devices, nano-photonics, and nano-fluidics.This book is intended as a guide to the researcher new to this field, reading related journals or facing the complexities of a technical conference. Its goal is to give enough background information to enable such a researcher to understand, and appreciate, new developments in nanolithography, and to go on to make advances of his/her own. - Outlines the current state of the art in alternative nanolithography technologies in order to cope with the future reduction in size of semiconductor chips to nanoscale dimensions - Covers lithographic techniques, including optical projection, extreme ultraviolet (EUV), nanoimprint, electron beam and ion beam lithography - Describes the emerging applications of nanolithography in nanoelectronics, nanophotonics and microfluidics

Book The Theory of Atomic Structure and Spectra

Download or read book The Theory of Atomic Structure and Spectra written by Robert D. Cowan and published by Univ of California Press. This book was released on 2023-11-15 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both the interpretation of atomic spectra and the application of atomic spectroscopy to current problems in astrophysics, laser physics, and thermonuclear plasmas require a thorough knowledge of the Slater-Condon theory of atomic structure and spectra. This book gathers together aspects of the theory that are widely scattered in the literature and augments them to produce a coherent set of closed-form equations suitable both for computer calculations on cases of arbitrary complexity and for hand calculations for very simple cases.

Book X Rays and Extreme Ultraviolet Radiation

Download or read book X Rays and Extreme Ultraviolet Radiation written by David Attwood and published by Cambridge University Press. This book was released on 2016 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the physics and understand the current applications of modern X-ray and EUV sources with this fully updated second edition.

Book Atomic Properties in Hot Plasmas

Download or read book Atomic Properties in Hot Plasmas written by Jacques Bauche and published by Springer. This book was released on 2015-08-03 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the calculation of hot-plasma properties which generally requires a huge number of atomic data. It is the first book that combines information on the details of the basic atomic physics and its application to atomic spectroscopy with the use of the relevant statistical approaches. Information like energy levels, radiative rates, collisional and radiative cross-sections, etc., must be included in equilibrium or non-equilibrium models in order to describe both the atomic-population kinetics and the radiative properties. From the very large number of levels and transitions involved in complex ions, some statistical (global) properties emerge. The book presents a coherent set of concepts and compact formulas suitable for tractable and accurate calculations. The topics addressed are: radiative emission and absorption, and a dozen of other collisional and radiative processes; transition arrays between level ensembles (configurations, superconfigurations); effective temperatures of configurations, superconfigurations, and ions; charge-state distributions; radiative power losses and opacity. There are many numerical examples and comparisons with experiment presented throughout the book. The plasma properties described in this book are especially relevant to large nuclear fusion facilities such as the NIF (California) and the ITER (France), and to astrophysics. Methods relevant to the central-field configurational model are described in detail in the appendices: tensor-operator techniques, second-quantization formalism, statistical distribution moments, and the algebra of partition functions. Some extra tools are propensity laws, correlations, and fractals. These methods are applied to the analytical derivation of many properties, specially the global ones, through which the complexity is much reduced. The book is intended for graduate-level students, and for physicists working in the field.

Book The Physics of Inertial Fusion

Download or read book The Physics of Inertial Fusion written by Stefano Atzeni and published by OUP Oxford. This book was released on 2004-06-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is on inertial confinement fusion, an alternative way to produce electrical power from hydrogen fuel by using powerful lasers or particle beams. It involves the compression of tiny amounts (micrograms) of fuel to thousand times solid density and pressures otherwise existing only in the centre of stars. Thanks to advances in laser technology, it is now possible to produce such extreme states of matter in the laboratory. Recent developments have boosted laser intensities again with new possibilities for laser particle accelerators, laser nuclear physics, and fast ignition of fusion targets. This is a reference book for those working on beam plasma physics, be it in the context of fundamental research or applications to fusion energy or novel ultra-bright laser sources. The book combines quite different areas of physics: beam target interaction, dense plasmas, hydrodynamic implosion and instabilities, radiative energy transfer as well as fusion reactions. Particular attention is given to simple and useful modelling, including dimensional analysis and similarity solutions. Both authors have worked in this field for more than 20 years. They want to address in particular those teaching this topic to students and all those interested in understanding the technical basis.