EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Special Section on Thermal Transport in Nanoscale Semiconductors

Download or read book Special Section on Thermal Transport in Nanoscale Semiconductors written by Kornelius Nielsch and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thermal Transport in Semiconductors

Download or read book Thermal Transport in Semiconductors written by Pol Torres Alvarez and published by Springer. This book was released on 2018-06-28 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from a broad overview of heat transport based on the Boltzmann Transport Equation, this book presents a comprehensive analysis of heat transport in bulk and nanomaterials based on a kinetic-collective model (KCM). This has become key to understanding the field of thermal transport in semiconductors, and represents an important stride. The book describes how heat transport becomes hydrodynamic at the nanoscale, propagating very much like a viscous fluid and manifesting vorticity and friction-like behavior. It introduces a generalization of Fourier’s law including a hydrodynamic term based on collective behavior in the phonon ensemble. This approach makes it possible to describe in a unifying way recent experiments that had to resort to unphysical assumptions in order to uphold the validity of Fourier’s law, demonstrating that hydrodynamic heat transport is a pervasive type of behavior in semiconductors at reduced scales.

Book Nanostructured Semiconductors

Download or read book Nanostructured Semiconductors written by Konstantinos Termentzidis and published by CRC Press. This book was released on 2017-09-01 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to nanostructures and nanostructured materials containing both amorphous and crystalline phases with a particular focus on their thermal properties. It is the first time that theoreticians and experimentalists from different domains gathered to treat this subject. It contains two distinct parts; the first combines theory and simulations methods with specific examples, while the second part discusses methods to fabricate nanomaterials with crystalline and amorphous phases and experimental techniques to measure the thermal conductivity of such materials. Physical insights are given in the first part of the book, related with the existing theoretical models and the state of art simulations methods (molecular dynamics, ab-initio simulations, kinetic theory of gases). In the second part, engineering advances in the nanofabrication of crystalline/amorphous heterostructures (heavy ion irradiation, electrochemical etching, aging/recrystallization, ball milling, PVD, laser crystallization and magnetron sputtering) and adequate experimental measurement methods are analyzed (Scanning Thermal Microscopy, Raman, thermal wave methods and x-rays neutrons spectroscopy).

Book Nanophononics

    Book Details:
  • Author : Zlatan Aksamija
  • Publisher : CRC Press
  • Release : 2017-11-22
  • ISBN : 1351609432
  • Pages : 188 pages

Download or read book Nanophononics written by Zlatan Aksamija and published by CRC Press. This book was released on 2017-11-22 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat in most semiconductor materials, including the traditional group IV elements (Si, Ge, diamond), III–V compounds (GaAs, wide-bandgap GaN), and carbon allotropes (graphene, CNTs), as well as emerging new materials like transition metal dichalcogenides (TMDCs), is stored and transported by lattice vibrations (phonons). Phonon generation through interactions with electrons (in nanoelectronics, power, and nonequilibrium devices) and light (optoelectronics) is the central mechanism of heat dissipation in nanoelectronics. This book focuses on the area of thermal effects in nanostructures, including the generation, transport, and conversion of heat at the nanoscale level. Phonon transport, including thermal conductivity in nanostructured materials, as well as numerical simulation methods, such as phonon Monte Carlo, Green’s functions, and first principles methods, feature prominently in the book, which comprises four main themes: (i) phonon generation/heat dissipation, (i) nanoscale phonon transport, (iii) applications/devices (including thermoelectrics), and (iv) emerging materials (graphene/2D). The book also covers recent advances in nanophononics—the study of phonons at the nanoscale. Applications of nanophononics focus on thermoelectric (TE) and tandem TE/photovoltaic energy conversion. The applications are augmented by a chapter on heat dissipation and self-heating in nanoelectronic devices. The book concludes with a chapter on thermal transport in nanoscale graphene ribbons, covering recent advances in phonon transport in 2D materials. The book will be an excellent reference for researchers and graduate students of nanoelectronics, device engineering, nanoscale heat transfer, and thermoelectric energy conversion. The book could also be a basis for a graduate special topics course in the field of nanoscale heat and energy.

Book Ultrafast Electro thermal Transport Through Nanoscale Electronic Materials and Interfaces

Download or read book Ultrafast Electro thermal Transport Through Nanoscale Electronic Materials and Interfaces written by Christopher Perez and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although silicon-based nanofabrication technology has satisfied computational demands for decades, the aggressive scaling of complementary metal oxide semiconductor (CMOS) technology to sub-5 nm geometries poses challenges that must be addressed at the materials level. One example is tuning electro-thermal transport in metal nanostructures to enhance the transfer of information and the dissipation of heat in integrated circuits. The manipulation of these pathways can be further optimized by integrating low-temperature passivation materials with varying thermal conductivities. Furthermore, the emergence of photonic interconnects presents an opportunity for the integration of electro-optic components that rely heavily on the movement, transfer, and recombination of charge carriers within photosensitive materials. All the above are governed by the fundamental limits of physical transfer mechanisms in semiconductors, bringing electron and phonon engineering --the control of heat and charge carriers in materials-- to the forefront of CMOS hardware design. This work explores the fundamental mechanisms and limits of electron-phonon transport in four individual material systems which can comprise different parts of a broader, electro-thermally optimized electronic system using primarily time-domain thermoreflectance (TDTR) and scanning ultrafast electron microscopy (SUEM) as probes. First, we discuss the electro-thermal characterization of iridium (Ir) as an emerging metal for high aspect ratio nanostructures on account of its favorable resistivity scaling with thickness. The exceptionally defect-free metal films offer minimal confounding microstructural effects and allow the probing of thermal anisotropy and cross-plane quasi-ballistic thermal transport in epitaxial Ir(001) interposed between Al and MgO(001). Such effects reveal a transition between three dominant cross-plane thermal transport mechanisms which include electron dominant, phonon dominant, and electron-phonon energy conversion dominant regimes at different thicknesses. Finally, we develop a phenomenological model that correctly describes the dominant transport regimes, providing insight into the thickness-dependent interplay between carriers in metals as well as enabling quick evaluation and potential scalability to broader material systems. Next, we describe defect-modulated thermal transport in sputtered aluminum nitride (AlN) thin films for enabling wide-bandgap (WBG), high-temperature, and high-power electronic devices deposited at back-end of the line (BEOL) compatible temperatures (

Book Nanoscale Energy Transport and Conversion

Download or read book Nanoscale Energy Transport and Conversion written by Gang Chen and published by Oxford University Press. This book was released on 2005-03-03 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.

Book Carrier Transport in Nanoscale MOS Transistors

Download or read book Carrier Transport in Nanoscale MOS Transistors written by Hideaki Tsuchiya and published by John Wiley & Sons. This book was released on 2017-06-13 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive advanced level examination of the transport theory of nanoscale devices Provides advanced level material of electron transport in nanoscale devices from basic principles of quantum mechanics through to advanced theory and various numerical techniques for electron transport Combines several up-to-date theoretical and numerical approaches in a unified manner, such as Wigner-Boltzmann equation, the recent progress of carrier transport research for nanoscale MOS transistors, and quantum correction approximations The authors approach the subject in a logical and systematic way, reflecting their extensive teaching and research backgrounds

Book Transport of Information Carriers in Semiconductors and Nanodevices

Download or read book Transport of Information Carriers in Semiconductors and Nanodevices written by El-Saba, Muhammad and published by IGI Global. This book was released on 2017-03-31 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rapid developments in technology have led to enhanced electronic systems and applications. When utilized correctly, these can have significant impacts on communication and computer systems. Transport of Information-Carriers in Semiconductors and Nanodevices is an innovative source of academic material on transport modelling in semiconductor material and nanoscale devices. Including a range of perspectives on relevant topics such as charge carriers, semiclassical transport theory, and organic semiconductors, this is an ideal publication for engineers, researchers, academics, professionals, and practitioners interested in emerging developments on transport equations that govern information carriers.

Book Phonon Thermal Transport in Silicon Based Nanomaterials

Download or read book Phonon Thermal Transport in Silicon Based Nanomaterials written by Hai-Peng Li and published by Springer. This book was released on 2018-09-08 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this Brief, authors introduce the advance in theoretical and experimental techniques for determining the thermal conductivity in nanomaterials, and focus on review of their recent theoretical studies on the thermal properties of silicon–based nanomaterials, such as zero–dimensional silicon nanoclusters, one–dimensional silicon nanowires, and graphenelike two–dimensional silicene. The specific subject matters covered include: size effect of thermal stability and phonon thermal transport in spherical silicon nanoclusters, surface effects of phonon thermal transport in silicon nanowires, and defects effects of phonon thermal transport in silicene. The results obtained are supplemented by numerical calculations, presented as tables and figures. The potential applications of these findings in nanoelectrics and thermoelectric energy conversion are also discussed. In this regard, this Brief represents an authoritative, systematic, and detailed description of the current status of phonon thermal transport in silicon–based nanomaterials. This Brief should be a highly valuable reference for young scientists and postgraduate students active in the fields of nanoscale thermal transport and silicon-based nanomaterials.

Book Simulation of Thermal Transport in Semiconductor Nanostructures

Download or read book Simulation of Thermal Transport in Semiconductor Nanostructures written by Song Mei and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the advancement of nanofabrication techniques, the sizes of semiconductor electronic and optoelectronic devices keep decreasing while the operating speeds keep increasing. High-speed operation leads to more heat generation and puts more thermal stress on the devices. Since the heat conduction in semiconductors is dominated by the lattice (i.e., phonons), understanding phonon transport in nanostructures is essential to addressing and alleviating the thermal-stress problem in these modern devices. In addition to the increased thermal stress, the advanced techniques that have allowed for the shrinking of the devices routinely rely on heterostructuring, doping, alloying, and the growth of intentionally strained layers to achieve the desired electronic and optical properties. These introduce impediments to phonon transport such as boundaries, interfaces, point defects (alloy atoms or dopants), and strain. Phonon transport is strongly affected by this nanoscale disorder. This dissertation examines how different types of disorder interact with phonons and degrade phonon transport. First, we study thermal transport in graphene nanoribbons (GNRs). GNRs are quasi-one-dimensional (quasi-1D) systems where the edges (boundaries) play an important role in reducing thermal conductivity. Additionally, the thermal transport in GNRs is anisotropic and depend on the GNR's chirality (GNR orientation and edge termination). We use phonon Monte Carlo (PMC) with full phonon dispersions to describe two highly-symmetric types of GNRs: the armchair GNR (AGNR) and the zigzag GNR (ZGNR). PMC tracks phonon in real space and we can explicitly include non-trivial edge structures. Moreover, the relatively low computational burden of PMC allows us to simulate samples up to 100 $\mu$m in length and predict an upper limit for thermal conductivity in graphene. We then investigate the thermal conductivity in III-V superlattices (SLs). SLs consist of alternating thin layers of different materials and III-V SLs are widely used in nanoscale thermoelectric and optoelectronic devices. The key feature in SLs is that it contains many interfaces, which dictates thermal transport. As III-V SLs are often fabricated using well-controlled techniques and have high-quality interfaces, we develop a model with only one free parameter---the effective rms roughness of the interfaces---to describe its twofold influence: reducing the in-plane layer thermal conductivity and introducing thermal boundary resistance (TBR) in the cross-plane direction. Both the calculated in-plane and cross-plane thermal conductivity of SLs agree with a number of different experiments. Finally, we study thermal conductivity of ternary III-V alloys. In modern optoelectronic devices, ternary III-V alloys are used more often than binary compounds because one can use composition engineering to achieve different effective masses, electron/hole barrier heights, and strain levels. Ternary alloys are usually treated under the virtual crystal approximation (VCA) where cation atoms are assumed to be randomly distributed and possess an averaged mass. This assumption is challenged by a discrepancy between different experiments, as well as the discrepancy between experiments and calculations. We use molecular dynamics (MD) to study the ternary alloy system as both atom masses and atom locations are explicitly tracked in MD. We discover that the thermal conductivity is determined by a competition between mass-difference scattering and the short-range ordering of the cations.

Book Nanoscale Thermal and Thermoelectric Energy Transport in Crystalline and Disordered Materials

Download or read book Nanoscale Thermal and Thermoelectric Energy Transport in Crystalline and Disordered Materials written by Jiawei Zhou and published by . This book was released on 2019 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy transport provides the fundamental basis for operation of devices from transistors to solar cells. Despite past theories that successfully illustrate the principles behind the energy transport based on solid state physics, the microscopic details of the energy transport are not always clear due to the lack of tool to quantify the contribution from different degrees of freedom. Recent progress in first principles computations and development in optical characterization has offered us new ways to understand the energy transport at the nanoscale in a quantitative way. In this thesis, by leveraging these techniques, we aim to providing a detailed understanding of thermal and thermoelectric energy transport in crystalline and disordered materials, especially about how the energy transport depends on atomistic level details such as chemical bondings. Specifically, we will discuss three examples. 1) Electron transport in semiconductors: how electrons propagate as they interact with lattice and impurities. 2) Interaction between charge and heat: how the free carriers have an impact on the heat dissipation in semiconductors 3) Heat conduction in polymers: how the heat transfer in an amorphous system depends on its molecular structures. In the case of electron transport, we developed and applied first principles simulation to show that a large electron mobility can benefit from symmetry-protected non-bonding orbitals. Such orbitals result in weak electron-lattice coupling that explains the unusually large power factors in half-Heusler materials - a good thermoelectric material system. By devising an optical experiment to probe the ultrafast thermal decay, we quantified the effect of electron-phonon interaction on the thermal transport. Our results show that the thermal conductivity can be significantly affected by the free carriers. Lastly, we built a theoretical model to understand the heat conduction in amorphous polymers, and used this knowledge to design materials that are heat-conducting yet soft. These understandings will potentially facilitate discovery of new material systems with beneficial charge and heat transport characteristic.

Book Nanoscale Electronic and Thermal Transport Properties in III V RE V Nanostructures

Download or read book Nanoscale Electronic and Thermal Transport Properties in III V RE V Nanostructures written by Keun Woo Park and published by . This book was released on 2013 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: The incorporation of rare earth-V (RE-V) semimetallic nanoparticles embedded in III-V compound semiconductors is of great interest for applications in solid-state devices including multijunction tandem solar cells, thermoelectric devices, and fast photoconductors for terahertz radiation sources and receivers. With regard to those nanoparticle roles in device applications and material itself, electrical and thermal properties of embedded RE-V nanoparticles, including nanoscale morphology, electronic structure, and electrical and thermal conductivity of such nanoparticles are essential to be understood to engineer their properties to optimize their influence on device performance. To understand embedded RE-V semimetallic nanostructures in III-V compound semiconductors, nanoscale characterization tools are essential for analysis their properties incorporated in compound semiconductors. In this dissertation, we used atomic force microscopy (AFM) with other secondary detection tools to investigate nanoscale material properties of semimetallic RE-V and GaAs heterostructures, grown by molecular beam epitaxy. We used scanning capacitance microscopy and conductive AFM techniques to understand electronic and electrical properties of ErAs/GaAs heterostructures. For the electrical properties, this thesis investigates details of statistical analysis of scanning capacitance and local conductivity images contrast to provide insights into (i) nanoparticle structure at length scales smaller than the nominal spatial resolution of the scanned probe measurement, and (ii) both lateral and vertical nanoparticle morphology at nanometer to atomic length scales, and their influence on electrical conductivity. To understand thermal properties of ErAs nanoparticles, in-plane and cross-sectional plane of ErAs/GaAs superlattice structure were investigated with a scanning probe microscopy technique implemented with 3[omega] method for thermal measurement. By performing detailed numerical modeling of thermal transport between thermal probe tip and employed samples, and estimation of additional phonon scattering induced by ErAs nanoparticles, we could understand influences of ErAs nanoparticles on the host GaAs thermal conductivity. Investigation of ErAs semimetallic nanostructure embedded in GaAs matrix with scanned probe microscopy provided detailed understanding of their electronic, electrical and thermal properties. In addition, this dissertation also demonstrates that an atomic force microscope with secondary detection techniques is promising apparatus to understand and investigate intrinsic properties of nanostructure materials, nanoscale charge transports, when the system is combined with detailed modeling and simulations.

Book Thermal and Thermoelectric Transport in Nanoscale Systems

Download or read book Thermal and Thermoelectric Transport in Nanoscale Systems written by Padraig Gerard Murphy and published by . This book was released on 2008 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thermal Transport in Semiconductor Nanowires

Download or read book Thermal Transport in Semiconductor Nanowires written by J. Anaya and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanoscale Thermoelectrics

Download or read book Nanoscale Thermoelectrics written by Xiaodong Wang and published by Springer Science & Business Media. This book was released on 2013-11-18 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the efficient utilization of energy resources and the minimization of environmental damage, thermoelectric materials can play an important role by converting waste heat into electricity directly. Nanostructured thermoelectric materials have received much attention recently due to the potential for enhanced properties associated with size effects and quantum confinement. Nanoscale Thermoelectrics describes the theory underlying these phenomena, as well as various thermoelectric materials and nanostructures such as carbon nanotubes, SiGe nanowires, and graphene nanoribbons. Chapters written by leading scientists throughout the world are intended to create a fundamental bridge between thermoelectrics and nanotechnology, and to stimulate readers' interest in developing new types of thermoelectric materials and devices for power generation and other applications. Nanoscale Thermoelectrics is both a comprehensive introduction to the field and a guide to further research, and can be recommended for Physics, Electrical Engineering, and Materials Science departments.

Book Lessons From Nanoelectronics  A New Perspective On Transport  Second Edition    Part A  Basic Concepts

Download or read book Lessons From Nanoelectronics A New Perspective On Transport Second Edition Part A Basic Concepts written by Supriyo Datta and published by World Scientific. This book was released on 2017-03-20 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Everyone is familiar with the amazing performance of a modern smartphone, powered by a billion-plus nanotransistors, each having an active region that is barely a few hundred atoms long. The same amazing technology has also led to a deeper understanding of the nature of current flow and heat dissipation on an atomic scale which is of broad relevance to the general problems of non-equilibrium statistical mechanics that pervade many different fields.This book is based on a set of two online courses originally offered in 2012 on nanoHUB-U and more recently in 2015 on edX. In preparing the second edition the author decided to split it into parts A and B titled Basic Concepts and Quantum Transport respectively, along the lines of the two courses. A list of available video lectures corresponding to different sections of this volume is provided upfront.To make these lectures accessible to anyone in any branch of science or engineering, the author assume very little background beyond linear algebra and differential equations. However, the author will be discussing advanced concepts that should be of interest even to specialists, who are encouraged to look at his earlier books for additional technical details.

Book Thermal Transport at the Nanoscale

Download or read book Thermal Transport at the Nanoscale written by Samuel Cole Huberman and published by . This book was released on 2018 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the global pursuit of clean and efficient sources of energy to the challenges presented by the high power densities in the semiconductor industry to the problem of decoherence in quantum systems, thermal processes are ubiquitous across all scales of space and time. Work done in the last decade has led to a number of experimental and theoretical developments that have enabled scientists and engineers to construct an accurate picture of thermal transport at small length and time scales. In this work, we employ and contribute to this modern toolset by testing and pushing the limits of our understanding. First, we experimentally examine the effects of domain walls and crystal structure in ferroelectric thin films on thermal transport. We move on to study the effect of crystal structure and defects in oxide thin films, in which we demonstrate a reversible process that can tune thermal conductivity across one order of magnitude. Secondly, we experimentally and theoretically examine deviations from the diffusive regime of thermal transport in SiGe alloys, thereby extending current theory and experiment to the study of size effects in thermal transport to opaque materials. Finally, we go beyond the single mode approximation to the Boltzmann transport equation and develop a formalism to study size effects and hydrodynamic phenomena by solving the full scattering matrix version of the linearized Boltzmann transport equation. Using this formalism as a guide, we report the experimental observation of second sound in graphite.