Download or read book Silicon Germanium SiGe Nanostructures written by Y. Shiraki and published by Elsevier. This book was released on 2011-02-26 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices.The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and modelling. Part three covers the material properties of SiGe nanostructures, including chapters on such topics as strain-induced defects, transport properties and microcavities and quantum cascade laser structures. In Part four, devices utilising SiGe alloys are discussed. Chapters cover ultra large scale integrated applications, MOSFETs and the use of SiGe in different types of transistors and optical devices.With its distinguished editors and team of international contributors, Silicon-germanium (SiGe) nanostructures is a standard reference for researchers focusing on semiconductor devices and materials in industry and academia, particularly those interested in nanostructures. - Reviews the materials science of nanostructures and their properties and applications in different electronic devices - Assesses the structural properties of SiGe nanostructures, discussing electronic band structures of SiGe alloys - Explores the formation of SiGe nanostructuresfeaturing different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition
Download or read book One Dimensional Nanostructures written by Tianyou Zhai and published by John Wiley & Sons. This book was released on 2012-10-19 with total page 857 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the latest research breakthroughs and applications Since the discovery of carbon nanotubes in 1991, one-dimensional nanostructures have been at the forefront of nanotechnology research, promising to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. With contributions from 68 leading international experts, this book reviews both the underlying principles as well as the latest discoveries and applications in the field, presenting the state of the technology. Readers will find expert coverage of all major classes of one-dimensional nanostructures, including carbon nanotubes, semiconductor nanowires, organic molecule nanostructures, polymer nanofibers, peptide nanostructures, and supramolecular nanostructures. Moreover, the book offers unique insights into the future of one-dimensional nanostructures, with expert forecasts of new research breakthroughs and applications. One-Dimensional Nanostructures collects and analyzes a wealth of key research findings and applications, with detailed coverage of: Synthesis Properties Energy applications Photonics and optoelectronics applications Sensing, plasmonics, electronics, and biosciences applications Practical case studies demonstrate how the latest applications work. Tables throughout the book summarize key information, and diagrams enable readers to grasp complex concepts and designs. References at the end of each chapter serve as a gateway to the literature in the field. With its clear explanations of the underlying principles of one-dimensional nanostructures, this book is ideal for students, researchers, and academics in chemistry, physics, materials science, and engineering. Moreover, One-Dimensional Nanostructures will help readers advance their own investigations in order to develop the next generation of applications.
Download or read book Towards the First Silicon Laser written by Lorenzo Pavesi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon, the leading material in microelectronics during the last four decades, also promises to be the key material in the future. Despite many claims that silicon technology has reached fundamental limits, the performance of silicon microelectronics continues to improve steadily. The same holds for almost all the applications for which Si was considered to be unsuitable. The main exception to this positive trend is the silicon laser, which has not been demonstrated to date. The main reason for this comes from a fundamental limitation related to the indirect nature of the Si band-gap. In the recent past, many different approaches have been taken to achieve this goal: dislocated silicon, extremely pure silicon, silicon nanocrystals, porous silicon, Er doped Si-Ge, SiGe alloys and multiquantum wells, SiGe quantum dots, SiGe quantum cascade structures, shallow impurity centers in silicon and Er doped silicon. All of these are abundantly illustrated in the present book.
Download or read book Semiconductor Nanostructures for Optoelectronic Applications written by Todd D. Steiner and published by Artech House. This book was released on 2004 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation Tiny structures measurable on the nanometer scale (one-billionth of a meter) are known as nanostructures, and nanotechnology is the emerging application of these nanostructures into useful nanoscale devices. As we enter the 21st century, more and more professional are using nanotechnology to create semiconductors for a variety of applications, including communications, information technology, medical, and transportation devices. Written by today's best researchers of semiconductor nanostructures, this cutting-edge resource provides a snapshot of this exciting and fast-changing field. The book covers the latest advances in nanotechnology and discusses the applications of nanostructures to optoelectronics, photonics, and electronics.
Download or read book Silicon Nano biotechnology written by Yao He and published by Springer Science & Business Media. This book was released on 2014-04-02 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the latest advances in the development of silicon nano-biotechnology for biological and biomedical applications, which include biosensing, bioimaging, and cancer therapy. In this book, newly developed silicon nano-biotechnology and its biomedical applications are systematically introduced. For instance, fluorescent silicon nanoparticles, serving as novel high-performance biological nanoprobes, are superbly suited to real-time and long-term bioimaging. Silicon nanowire-based sensing platform is especially capable of sensitive, specific, and multiplexed detection of various biological species. Silicon-based nanocarriers with ultra-high drug-loading capacity are highly efficacious for in vitro and in vivo cancer therapies. This book is intended for readers who are interested in the design of functional silicon nanostructures and their biological and biomedical applications. It uses silicon nanoparticles and silicon nanowires as models and discusses topics ranging from their synthesis to their biological applications, the goal being to highlight these exciting achievements as starting points in the field of silicon nano-biotechnology. Yao He is a Professor at Institute of Functional Nano&Soft Materials (FUNSOM), Soochow University, China. Yuanyuan Su is an Associate Professor at Institute of Functional Nano&Soft Materials (FUNSOM), Soochow University, China.
Download or read book Self Assembled Nanostructures written by Jin Zhang and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.
Download or read book Encyclopedia of Ionic Liquids written by Suojiang Zhang and published by Springer Nature. This book was released on 2023-02-03 with total page 1391 pages. Available in PDF, EPUB and Kindle. Book excerpt: The encyclopedia consists 13 subareas as follows: 1: Synthesis and Characterisation of Ionic Liquids (Section Editors: Prof. Fu-Wei Li and Prof. Zhen Li) 2: Physicochemical Properties of Ionic Liquids (Section Editors: Asso. Prof. Qing Zhou, Prof. Xingmei Lu and Prof. Xiaoyan Ji) 3: Computational and Theoretical Modeling of Ionic Liquids (Section Editors: Prof. Guang Feng and Prof. Peter T. Cummings) 4: Toxicology and Biodegradation of Ionic Liquids (Section Editors: Prof. Chunxi Li and Prof. Stefan Stolte) 5: Ionic Liquids in Electrochemistry (Section Editors: Prof. Yingying Lu, Prof. Houlong Zhuang and Prof. Chuan Zhao) 6. Ionic Liquids in Organic Reaction (Section Editors: Prof. Liang-Nian He and Prof. Bhalchandra M. Bhanage) 7. Ionic Liquids in Separation (Section Editors: Prof. Huabin Xing) 8. Ionic Liquids in Biomass and Biomolecules (Section Editors: Prof. Toshiyuki Itoh and Prof. Jian Sun) 9. Ionic Liquids in Materials Science (Section Editors: Prof. Sheng Dai and Prof. Tao Wang) 10. Ionic Liquids in Polymer Science (Section Editors: Asso. Prof. Jinming Zhang and Prof. Jun Zhang) 11. Ionic Liquids in Environmental Science (Section Editors: Prof. Tiancheng Mu, Prof. Arunprakash T. Karunanithi and Prof. Yingxiong Wang) 12. Ionic Liquids in Green Chemistry (Section Editors: Prof. Buxing Han and Prof. Peter Licence) 13. Emerging Applications of Ionic Liquids (Pharmacology, Food Science, Agriculture, Nuclear Science Technology, Optics) (Section Editors: Prof. Zhonghao Li and Prof. Maya Guncheva) This encyclopedia is systematic and comprehensive, with detailed descriptions about theory, technology, and industrial applications. This encyclopedia is valuable for students, researchers and industrial players, giving them a quick understanding and overview of ionic liquids in various aspects.
Download or read book Comprehensive Nanoscience and Technology written by and published by Academic Press. This book was released on 2010-10-29 with total page 2785 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.
Download or read book Silicon Nanomaterials Sourcebook written by Klaus D. Sattler and published by CRC Press. This book was released on 2017-07-28 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive tutorial guide to silicon nanomaterials spans from fundamental properties, growth mechanisms, and processing of nanosilicon to electronic device, energy conversion and storage, biomedical, and environmental applications. It also presents core knowledge with basic mathematical equations, tables, and graphs in order to provide the reader with the tools necessary to understand the latest technology developments. From low-dimensional structures, quantum dots, and nanowires to hybrid materials, arrays, networks, and biomedical applications, this Sourcebook is a complete resource for anyone working with this materials: Covers fundamental concepts, properties, methods, and practical applications. Focuses on one important type of silicon nanomaterial in every chapter. Discusses formation, properties, and applications for each material. Written in a tutorial style with basic equations and fundamentals included in an extended introduction. Highlights materials that show exceptional properties as well as strong prospects for future applications. Klaus D. Sattler is professor physics at the University of Hawaii, Honolulu, having earned his PhD at the Swiss Federal Institute of Technology (ETH) in Zurich. He was honored with the Walter Schottky Prize from the German Physical Society, and is the editor of the sister work also published by Taylor & Francis, Carbon Nanomaterials Sourcebook, as well as the acclaimed multi-volume Handbook of Nanophysics.
Download or read book Micro and Nanomanufacturing Volume II written by Mark J. Jackson and published by Springer. This book was released on 2017-10-28 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive treatment of micro and nanofabrication techniques, and applies established and research laboratory manufacturing techniques to a wide variety of materials. It is a companion volume to “Micro and Nanomanufacturing” (2007) and covers new topics such as aligned nanowire growth, molecular dynamics simulation of nanomaterials, atomic force microscopy for microbial cell surfaces, 3D printing of pharmaceuticals, microvascular coaptation methods, and more. The chapters also cover a wide variety of applications in areas such as surgery, auto components, living cell detection, dentistry, nanoparticles in medicine, and aerospace components. This is an ideal text for professionals working in the field, and for graduate students in micro and nanomanufacturing courses.
Download or read book Low Dimensional Solids written by Duncan W. Bruce and published by John Wiley & Sons. This book was released on 2011-03-29 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: With physical properties that often may not be described by the transposition of physical laws from 3D space across to 2D or even 1D space, low-dimensional solids exhibit a high degree of anisotropy in the spatial distribution of their chemical bonds. This means that they can demonstrate new phenomena such as charge-density waves and can display nanoparticulate (0D), fibrous (1D) and lamellar (2D) morphologies. This text presents some of the most recent research into the synthesis and properties of these solids and covers: Metal Oxide Nanoparticles Inorganic Nanotubes and Nanowires Biomedical Applications of Layered Double Hydroxides Carbon Nanotubes and Related Structures Superconducting Borides Introducing topics such as novel layered superconductors, inorganic-DNA delivery systems and the chemistry and physics of inorganic nanotubes and nanosheets, this book discusses some of the most exciting concepts in this developing field. Additional volumes in the Inorganic Materials Book Series: Molecular Materials Functional Oxides Porous Materials Energy Materials All volumes are sold individually or as comprehensive 5 Volume Set.
Download or read book Synthesis of Nanomaterials written by S. Noor Mohammad and published by Springer Nature. This book was released on 2020-10-27 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the synthesis of nanomaterials with a strong focus on the underlying reaction kinetics and various synthesis mechanisms. It gives a detailed description of all major synthesis routes of many types of novel nanomaterials including nanowires, carbon nanotubes, semiconductor nanotubes, carbon nanobelts, nanofibers, nanorings, nanodots and quantum dots. In addition, it articulates the fundamental mechanisms of nanomaterials synthesis via vapor-phase, liquid-phase and solid-phase processes, highlighting the various strengths and weaknesses of each mechanism. This monograph provides the reader with a thorough review of the known state-of-the-art, along with a detailed comparison and analysis of all possible nanomaterials synthesis mechanisms. An important element of the book is how to obtain critical knowledge for controlling the morphology of nanomaterials and thereby fine tune their materials properties. The book is an ideal guide for graduate students and researchers new to the field seeking to establish or enhance their understanding of the physical and chemical fundamentals of nanomaterials synthesis mechanisms.
Download or read book Modern Trends in Physics Research written by Lotfia M. El Nadi and published by World Scientific. This book was released on 2011 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Trends in Physics Research MTPR-08 was the third of the International Conference series held biannually by the Physics Department in Faculty of Science of Cairo University.The objectives of the conference are to develop greater understanding of physics research and its applications to promote new industries; to innovate knowledge about recent breakthroughs in physics, both the fundamental and technological aspects; to implement of international cooperation in new trends in physics research and to improve the performance of the physics research facilities in Egypt. This proceeding highlights the latest results in the fields of astrophysics, atomic, molecular, condensed matter, lasers, nuclear and particle physics. The peer refereed papers collected in this volume, were written by international experts in these fields. The keynote lecture, ?Overview on the Era of the Exploration of the Planets and Planetary Systems,? delivered by Professor Jay M Pasachoff of Williams College ? Hopkins Observatory was featured in the proceedings. As 2008 was the 50th anniversary of the launch of Sputnik, which began the Space Age, this volume is a unique collection of keynote, plenary and invited presentations covering fields of astrophysics, atomic physics, condensed matter physics as well as nanotechnology, molecular physics and laser physics. This volume will serve as a useful reference for scientists in modern physics and technology of the 21st century.
Download or read book SiGe Ge and Related Compounds 6 Materials Processing and Devices written by D. Harame and published by The Electrochemical Society. This book was released on with total page 1042 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nanoparticles written by Raz Jelinek and published by Walter de Gruyter GmbH & Co KG. This book was released on 2015-05-19 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoparticles presents the remarkable variety of nanoparticle families, compositions, structures, and functions. The book discusses nanoparticles made of semiconductors, metals, metal-oxides, organics, biological and hybrid constituents. Through a wealth of examples and case studies, supplemented by numerous figures, readers that are not necessarily active or experts in this area acquire a broad overview of this exciting field at the interface between scientifi c research and practical technologies. The contents summarize the contributions to this field of diverse scientific and technological disciplines - chemistry, physics, biology, electronics and others providing a comprehensive knowledge - the types of nanoparticles, their compositions and how the relationships between the atomic constituents affect their properties, as well as potential applications of nanoparticles. - Covers diverse uses of nanoparticles in scientifi c research and industrial applications, underscoring their extraordinary diversity and potential utilization. - Experimental and conceptual approaches applied to the study of nanoparticles are discussed extensively. Additional references provide the reader with a basis for further study. - Also available by Professor Jelinek: Biomimetics - A Molecular Perspective (2013), ISBN: 978-3-11-028117-0
Download or read book Advances in Nanodevices and Nanofabrication written by Qing Zhang and published by CRC Press. This book was released on 2012-07-17 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: A variety of devices at nanometer/molecular scale for electronic, photonic, optoelectronic, biological, and mechanical applications have been created through the rapid development of materials and fabrication technology. Further development of nanodevices strongly depends on the state-of-the-art knowledge of science and technology at the sub-100 nm scale. This book presents and highlights some of the key advances on, but not limited to, electronic and optoelectronic devices of nanometer/molecular scale, nanomechanics and nanoelectromechanical systems, electromechanical coupled devices, manipulation and aligning processes at nanometer/molecular scale, quantum phenomena, modeling of nanodevices and nanostructures, fabrication and property characterization of nanodevices, and nanofabrication with focused beam technology.
Download or read book Plasma Processing of Nanomaterials written by R. Mohan Sankaran and published by CRC Press. This book was released on 2017-12-19 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: We are at a critical evolutionary juncture in the research and development of low-temperature plasmas, which have become essential to synthesizing and processing vital nanoscale materials. More and more industries are increasingly dependent on plasma technology to develop integrated small-scale devices, but physical limits to growth, and other challenges, threaten progress. Plasma Processing of Nanomaterials is an in-depth guide to the art and science of plasma-based chemical processes used to synthesize, process, and modify various classes of nanoscale materials such as nanoparticles, carbon nanotubes, and semiconductor nanowires. Plasma technology enables a wide range of academic and industrial applications in fields including electronics, textiles, automotives, aerospace, and biomedical. A prime example is the semiconductor industry, in which engineers revolutionized microelectronics by using plasmas to deposit and etch thin films and fabricate integrated circuits. An overview of progress and future potential in plasma processing, this reference illustrates key experimental and theoretical aspects by presenting practical examples of: Nanoscale etching/deposition of thin films Catalytic growth of carbon nanotubes and semiconductor nanowires Silicon nanoparticle synthesis Functionalization of carbon nanotubes Self-organized nanostructures Significant advances are expected in nanoelectronics, photovoltaics, and other emerging fields as plasma technology is further optimized to improve the implementation of nanomaterials with well-defined size, shape, and composition. Moving away from the usual focus on wet techniques embraced in chemistry and physics, the author sheds light on pivotal breakthroughs being made by the smaller plasma community. Written for a diverse audience working in fields ranging from nanoelectronics and energy sensors to catalysis and nanomedicine, this resource will help readers improve development and application of nanomaterials in their own work. About the Author: R. Mohan Sankaran received the American Vacuum Society’s 2011 Peter Mark Memorial Award for his outstanding contributions to tandem plasma synthesis.