Download or read book Gradient Flows written by Luigi Ambrosio and published by Springer Science & Business Media. This book was released on 2008-10-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.
Download or read book Pattern Recognition written by Rudolf Mester and published by Springer. This book was released on 2011-09-02 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 33rd Symposium of the German Association for Pattern Recognition, DAGM 2011, held in Frankfurt/Main, Germany, in August/September 2011. The 20 revised full papers and 22 revised poster papers were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections on object recognition, adverse vision conditions challenge, shape and matching, segmentation and early vision, robot vision, machine learning, and motion. The volume also includes the young researcher's forum, a section where a carefully jury-selected ensemble of young researchers present their Master thesis work.
Download or read book Variational Analysis in Sobolev and BV Spaces written by Hedy Attouch and published by SIAM. This book was released on 2014-10-02 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an excellent guide for anyone interested in variational analysis, optimization, and PDEs. It offers a detailed presentation of the most important tools in variational analysis as well as applications to problems in geometry, mechanics, elasticity, and computer vision. This second edition covers several new topics: new section on capacity theory and elements of potential theory now includes the concepts of quasi-open sets and quasi-continuity; increased number of examples in the areas of linearized elasticity system, obstacles problems, convection-diffusion, and semilinear equations; new section on mass transportation problems and the Kantorovich relaxed formulation of the Monge problem; new subsection on stochastic homogenization establishes the mathematical tools coming from ergodic theory; and an entirely new and comprehensive chapter (17) devoted to gradient flows and the dynamical approach to equilibria. The book is intended for Ph.D. students, researchers, and practitioners who want to approach the field of variational analysis in a systematic way.
Download or read book Splitting Methods in Communication Imaging Science and Engineering written by Roland Glowinski and published by Springer. This book was released on 2017-01-05 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas.
Download or read book Scale Space and Variational Methods in Computer Vision written by Fiorella Sgallari and published by Springer Science & Business Media. This book was released on 2007-05-24 with total page 946 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2007, emanated from the joint edition of the 4th International Workshop on Variational, Geometric and Level Set Methods in Computer Vision, VLSM 2007 and the 6th International Conference on Scale Space and PDE Methods in Computer Vision, Scale-Space 2007, held in Ischia Italy, May/June 2007.
Download or read book Nonlinear Inverse Problems in Imaging written by Jin Keun Seo and published by John Wiley & Sons. This book was released on 2012-11-16 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides researchers and engineers in the imaging field with the skills they need to effectively deal with nonlinear inverse problems associated with different imaging modalities, including impedance imaging, optical tomography, elastography, and electrical source imaging. Focusing on numerically implementable methods, the book bridges the gap between theory and applications, helping readers tackle problems in applied mathematics and engineering. Complete, self-contained coverage includes basic concepts, models, computational methods, numerical simulations, examples, and case studies. Provides a step-by-step progressive treatment of topics for ease of understanding. Discusses the underlying physical phenomena as well as implementation details of image reconstruction algorithms as prerequisites for finding solutions to non linear inverse problems with practical significance and value. Includes end of chapter problems, case studies and examples with solutions throughout the book. Companion website will provide further examples and solutions, experimental data sets, open problems, teaching material such as PowerPoint slides and software including MATLAB m files. Essential reading for Graduate students and researchers in imaging science working across the areas of applied mathematics, biomedical engineering, and electrical engineering and specifically those involved in nonlinear imaging techniques, impedance imaging, optical tomography, elastography, and electrical source imaging
Download or read book Functional Analysis Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Download or read book Computational Modeling of Objects Presented in Images Fundamentals Methods and Applications written by Yongjie Jessica Zhang and published by Springer. This book was released on 2014-07-23 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 4th International Conference on Computational Modeling of Objects Presented in Images, CompIMAGE 2014, held in Pittsburgh, PA, USA, in September 2014. The 29 revised full papers presented together with 10 short papers and 6 keynote talks were carefully reviewed and selected from 54 submissions. The papers cover the following topics: medical treatment, imaging and analysis; image registration, denoising and feature identification; image segmentation; shape analysis, meshing and graphs; medical image processing and simulations; image recognition, reconstruction and predictive modeling; image-based modeling and simulations; and computer vision and data-driven investigations.
Download or read book Riemannian Geometric Statistics in Medical Image Analysis written by Xavier Pennec and published by Academic Press. This book was released on 2019-09-02 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data. Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods. Beyond medical image computing, the methods described in this book may also apply to other domains such as signal processing, computer vision, geometric deep learning, and other domains where statistics on geometric features appear. As such, the presented core methodology takes its place in the field of geometric statistics, the statistical analysis of data being elements of nonlinear geometric spaces. The foundational material and the advanced techniques presented in the later parts of the book can be useful in domains outside medical imaging and present important applications of geometric statistics methodology Content includes: - The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs - Applications of statistics on manifolds and shape spaces in medical image computing - Diffeomorphic deformations and their applications As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science. - A complete reference covering both the foundations and state-of-the-art methods - Edited and authored by leading researchers in the field - Contains theory, examples, applications, and algorithms - Gives an overview of current research challenges and future applications
Download or read book Electro magnetic Tissue Properties Mri written by Jin Keun Seo and published by World Scientific. This book was released on 2014-03-19 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book that presents a comprehensive introduction to and overview of electro-magnetic tissue property imaging techniques using MRI, focusing on Magnetic Resonance Electrical Impedance Tomography (MREIT), Electrical Properties Tomography (EPT) and Quantitative Susceptibility Mapping (QSM). The contrast information from these novel imaging modalities is unique since there is currently no other method to reconstruct high-resolution images of the electro-magnetic tissue properties including electrical conductivity, permittivity, and magnetic susceptibility. These three imaging modalities are based on Maxwell's equations and MRI data acquisition techniques. They are expanding MRI's ability to provide new contrast information on tissue structures and functions.To facilitate further technical progress, the book provides in-depth descriptions of the most updated research outcomes, including underlying physics, mathematical theories and models, measurement techniques, computation issues, and other challenging problems.
Download or read book Mathematical Image Processing written by Kristian Bredies and published by Springer. This book was released on 2019-02-06 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the mathematical aspects of modern image processing methods, with a special emphasis on the underlying ideas and concepts. It discusses a range of modern mathematical methods used to accomplish basic imaging tasks such as denoising, deblurring, enhancing, edge detection and inpainting. In addition to elementary methods like point operations, linear and morphological methods, and methods based on multiscale representations, the book also covers more recent methods based on partial differential equations and variational methods. Review of the German Edition: The overwhelming impression of the book is that of a very professional presentation of an appropriately developed and motivated textbook for a course like an introduction to fundamentals and modern theory of mathematical image processing. Additionally, it belongs to the bookcase of any office where someone is doing research/application in image processing. It has the virtues of a good and handy reference manual. (zbMATH, reviewer: Carl H. Rohwer, Stellenbosch)
Download or read book Image Processing and Analysis written by Tony F. Chan and published by SIAM. This book was released on 2005-09-01 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the mathematical foundation of modern image processing and low-level computer vision, bridging contemporary mathematics with state-of-the-art methodologies in modern image processing, whilst organizing contemporary literature into a coherent and logical structure. The authors have integrated the diversity of modern image processing approaches by revealing the few common threads that connect them to Fourier and spectral analysis, the machinery that image processing has been traditionally built on. The text is systematic and well organized: the geometric, functional, and atomic structures of images are investigated, before moving to a rigorous development and analysis of several image processors. The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring their intrinsic connections and integration. The material is balanced in theory and computation, following a solid theoretical analysis of model building and performance with computational implementation and numerical examples.
Download or read book Image Processing and Pattern Recognition written by Frank Y. Shih and published by John Wiley & Sons. This book was released on 2010-05-03 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to the essential principles of image processing and pattern recognition Techniques and applications in the areas of image processing and pattern recognition are growing at an unprecedented rate. Containing the latest state-of-the-art developments in the field, Image Processing and Pattern Recognition presents clear explanations of the fundamentals as well as the most recent applications. It explains the essential principles so readers will not only be able to easily implement the algorithms and techniques, but also lead themselves to discover new problems and applications. Unlike other books on the subject, this volume presents numerous fundamental and advanced image processing algorithms and pattern recognition techniques to illustrate the framework. Scores of graphs and examples, technical assistance, and practical tools illustrate the basic principles and help simplify the problems, allowing students as well as professionals to easily grasp even complicated theories. It also features unique coverage of the most interesting developments and updated techniques, such as image watermarking, digital steganography, document processing and classification, solar image processing and event classification, 3-D Euclidean distance transformation, shortest path planning, soft morphology, recursive morphology, regulated morphology, and sweep morphology. Additional topics include enhancement and segmentation techniques, active learning, feature extraction, neural networks, and fuzzy logic. Featuring supplemental materials for instructors and students, Image Processing and Pattern Recognition is designed for undergraduate seniors and graduate students, engineering and scientific researchers, and professionals who work in signal processing, image processing, pattern recognition, information security, document processing, multimedia systems, and solar physics.
Download or read book Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging written by Ke Chen and published by Springer Nature. This book was released on 2023-02-24 with total page 1981 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision. Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.
Download or read book Mathematical Methods in Image Processing and Inverse Problems written by Xue-Cheng Tai and published by Springer Nature. This book was released on 2021-09-25 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains eleven original and survey scientific research articles arose from presentations given by invited speakers at International Workshop on Image Processing and Inverse Problems, held in Beijing Computational Science Research Center, Beijing, China, April 21–24, 2018. The book was dedicated to Professor Raymond Chan on the occasion of his 60th birthday. The contents of the book cover topics including image reconstruction, image segmentation, image registration, inverse problems and so on. Deep learning, PDE, statistical theory based research methods and techniques were discussed. The state-of-the-art developments on mathematical analysis, advanced modeling, efficient algorithm and applications were presented. The collected papers in this book also give new research trends in deep learning and optimization for imaging science. It should be a good reference for researchers working on related problems, as well as for researchers working on computer vision and visualization, inverse problems, image processing and medical imaging.
Download or read book Mathematical Foundations of Image Processing and Analysis Volume 1 written by Jean-Charles Pinoli and published by John Wiley & Sons. This book was released on 2014-07-09 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Image processing and image analysis are typically important fields in information science and technology. By “image processing”, we generally understand all kinds of operation performed on images (or sequences of images) in order to increase their quality, restore their original content, emphasize some particular aspect of the information or optimize their transmission, or to perform radiometric and/or spatial analysis. By “image analysis” we understand, however, all kinds of operation performed on images (or sequences of images) in order to extract qualitative or quantitative data, perform measurements and apply statistical analysis. Whereas there are nowadays many books dealing with image processing, only a small number deal with image analysis. The methods and techniques involved in these fields of course have a wide range of applications in our daily world: industrial vision, material imaging, medical imaging, biological imaging, multimedia applications, satellite imaging, quality control, traffic control, and so on
Download or read book Graphs in Biomedical Image Analysis Computational Anatomy and Imaging Genetics written by M. Jorge Cardoso and published by Springer. This book was released on 2017-09-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed joint proceedings of the First International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2017, the 6th International Workshop on Mathematical Foundations of Computational Anatomy, MFCA 2017, and the Third International Workshop on Imaging Genetics, MICGen 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Québec City, QC, Canada, in September 2017. The 7 full papers presented at GRAIL 2017, the 10 full papers presented at MFCA 2017, and the 5 full papers presented at MICGen 2017 were carefully reviewed and selected. The GRAIL papers cover a wide range of graph based medical image analysis methods and applications, including probabilistic graphical models, neuroimaging using graph representations, machine learning for diagnosis prediction, and shape modeling. The MFCA papers deal with theoretical developments in non-linear image and surface registration in the context of computational anatomy. The MICGen papers cover topics in the field of medical genetics, computational biology and medical imaging.