EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Smoothed Particle Hydrodynamics

Download or read book Smoothed Particle Hydrodynamics written by Gui-Rong Liu and published by World Scientific. This book was released on 2003 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first-ever book on smoothed particle hydrodynamics (SPH)and its variations, covering the theoretical background, numericaltechniques, code implementation issues, and many novel and interestingapplications.

Book Meshfree Particle Methods

Download or read book Meshfree Particle Methods written by Shaofan Li and published by Springer Science & Business Media. This book was released on 2007-03-07 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meshfree Particle Methods is a comprehensive and systematic exposition of particle methods, meshfree Galerkin and partitition of unity methods, molecular dynamics methods, and multiscale methods. Most theories, computational formulations, and simulation results presented are recent developments in meshfree methods. They were either just published recently or even have not been published yet, many of them resulting from the authors ́ own research. The presentation of the technical content is heuristic and explanatory with a balance between mathematical rigor and engineering practice. It can be used as a graduate textbook or a comprehensive source for researchers, providing the state of the art on Meshfree Particle Methods.

Book Predictive Modeling of Dynamic Processes

Download or read book Predictive Modeling of Dynamic Processes written by Stefan Hiermaier and published by Springer Science & Business Media. This book was released on 2009-07-09 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Predictive Modeling of Dynamic Processes provides an overview of hydrocode technology, applicable to a variety of industries and areas of engineering design. Covering automotive crash, blast impact, and hypervelocity impact phenomena, this volume offers readers an in-depth explanation of the fundamental code components. Chapters include informative introductions to each topic, and explain the specific requirements pertaining to each predictive hydrocode. Successfully blending crash simulation, hydrocode technology and impact engineering, this volume fills a gap in the current competing literature available.

Book Fluid Mechanics and the SPH Method

Download or read book Fluid Mechanics and the SPH Method written by Damien Violeau and published by Oxford University Press. This book was released on 2012-05-03 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the SPH method for fluid modelling from a theoretical and applied viewpoint. It explains the foundations of the method, from physical principles, and will help researchers, students, and engineers to understand how the method should be used and why it works well.

Book Smoothed Particle Hydrodynamics

Download or read book Smoothed Particle Hydrodynamics written by Carlos Alberto Dutra Fraga Filho and published by Springer. This book was released on 2018-11-30 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on results obtained over a decade of study and research. It questions the use of dynamic molecular models in the continuum scale providing alternative solutions to open problems in the literature. It provides a physical-mathematical understanding of the differential equations that govern fluid flow and energy transport, serving as a reference to the application of Smoothed Particle Hydrodynamics in continuum fluid mechanics and transport phenomena. The physical-mathematical modelling of the problems in the continuum scale and the employment of the SPH method for solving the equations are presented. Examples of applications in continuum fluid mechanics with numerical results and discussions are also provided. This literature defends the concepts of continuum mechanics and the application of boundary treatment techniques that do not violate the laws of physics.

Book Smoothed Particle Hydrodynamics

Download or read book Smoothed Particle Hydrodynamics written by Tanmayee Gupte and published by . This book was released on 2018 with total page 43 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Smoothed particle hydrodynamics (SPH) is a meshfree particle method based on a Lagrangian formulation, which has been widely applied to different areas in astrophysics involving complicated fluid dynamical processes. For the first part of this project we have expanded an existing smoothed particle hydrodynamic code (StarCrash). We have added different time integration methods and used them to study the code's overall ability to conserve energy. In the second part we have evaluated the StarCrash code's ability to use different numerical treatments to perform shock tube simulations via Sod's shock tube test. We have used different evolution schemes involving either the energy or the entropy of the system, along with different artificial viscosity formulations, and compared the results from the numerical simulations with the analytical solution."--Abstract.

Book An Introduction to Meshfree Methods and Their Programming

Download or read book An Introduction to Meshfree Methods and Their Programming written by G.R. Liu and published by Springer Science & Business Media. This book was released on 2005-12-05 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite difference method (FDM) hasbeen used tosolve differential equation systems for centuries. The FDM works well for problems of simple geometry and was widely used before the invention of the much more efficient, robust finite element method (FEM). FEM is now widely used in handling problems with complex geometry. Currently, we are using and developing even more powerful numerical techniques aiming to obtain more accurate approximate solutions in a more convenient manner for even more complex systems. The meshfree or meshless method is one such phenomenal development in the past decade, and is the subject of this book. There are many MFree methods proposed so far for different applications. Currently, three monographs on MFree methods have been published. Mesh Free Methods, Moving Beyond the Finite Element Method d by GR Liu (2002) provides a systematic discussion on basic theories, fundamentals for MFree methods, especially on MFree weak-form methods. It provides a comprehensive record of well-known MFree methods and the wide coverage of applications of MFree methods to problems of solids mechanics (solids, beams, plates, shells, etc.) as well as fluid mechanics. The Meshless Local Petrov-Galerkin (MLPG) Method d by Atluri and Shen (2002) provides detailed discussions of the meshfree local Petrov-Galerkin (MLPG) method and itsvariations. Formulations and applications of MLPG are well addressed in their book.

Book Particle Methods for Multi Scale and Multi physics

Download or read book Particle Methods for Multi Scale and Multi physics written by Moubin E. T. Al LIU and published by World Scientific. This book was released on 2015-12-28 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-scale and multi-physics modeling is useful and important for all areas in engineering and sciences. Particle Methods for Multi-Scale and Multi-Physics systematically addresses some major particle methods for modeling multi-scale and multi-physical problems in engineering and sciences. It contains different particle methods from atomistic scales to continuum scales, with emphasis on molecular dynamics (MD), dissipative particle dynamics (DPD) and smoothed particle hydrodynamics (SPH). This book covers the theoretical background, numerical techniques and many interesting applications of the particle methods discussed in this text, especially in: micro-fluidics and bio-fluidics (e.g., micro drop dynamics, movement and suspension of macro-molecules, cell deformation and migration); environmental and geophysical flows (e.g., saturated and unsaturated flows in porous media and fractures); and free surface flows with possible interacting solid objects (e.g., wave impact, liquid sloshing, water entry and exit, oil spill and boom movement). The presented methodologies, techniques and example applications will benefit students, researchers and professionals in computational engineering and sciences --

Book Meshless Methods in Solid Mechanics

Download or read book Meshless Methods in Solid Mechanics written by Youping Chen and published by Springer Science & Business Media. This book was released on 2006-12-31 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamentals of continuum mechanics, the integral formulation methods of continuum problems, the basic concepts of finite element methods, and the methodologies, formulations, procedures, and applications of various meshless methods. It also provides general and detailed procedures of meshless analysis on elastostatics, elastodynamics, non-local continuum mechanics and plasticity with a large number of numerical examples. Some basic and important mathematical methods are included in the Appendixes. For readers who want to gain knowledge through hands-on experience, the meshless programs for elastostatics and elastodynamics are provided on an included disc.

Book Mesh Free Methods

    Book Details:
  • Author : G.R. Liu
  • Publisher : CRC Press
  • Release : 2002-07-29
  • ISBN : 1420040588
  • Pages : 715 pages

Download or read book Mesh Free Methods written by G.R. Liu and published by CRC Press. This book was released on 2002-07-29 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: As we attempt to solve engineering problems of ever increasing complexity, so must we develop and learn new methods for doing so. The Finite Difference Method used for centuries eventually gave way to Finite Element Methods (FEM), which better met the demands for flexibility, effectiveness, and accuracy in problems involving complex geometry. Now,

Book Meshfree and Particle Methods

Download or read book Meshfree and Particle Methods written by Ted Belytschko and published by John Wiley & Sons. This book was released on 2023-12-13 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meshfree and Particle Methods Provides thorough coverage of essential concepts and state-of-the-art developments in the field Meshfree and Particle Methods is the first book of its kind to combine comprehensive, up-to-date information on the fundamental theories and applications of meshfree methods with systematic guidance on practical coding implementation. Broad in scope and content, this unique volume provides readers with the knowledge necessary to perform research and solve challenging problems in nearly all fields of science and engineering using meshfree computational techniques. The authors provide detailed descriptions of essential issues in meshfree methods, as well as specific techniques to address them, while discussing a wide range of subjects and use cases. Topics include approximations in meshfree methods, nonlinear meshfree methods, essential boundary condition enforcement, quadrature in meshfree methods, strong form collocation methods, and more. Throughout the book, topics are integrated with descriptions of computer implementation and an open-source code (with a dedicated chapter for users) to illustrate the connection between the formulations discussed in the text and their real-world implementation and application. This authoritative resource: Explains the fundamentals of meshfree methods, their constructions, and their unique capabilities as compared to traditional methods Features an overview of the open-source meshfree code RKPM2D, including code and numerical examples Describes all the variational concepts required to solve scientific and engineering problems using meshfree methods such as Nitsche’s method and the Lagrange multiplier method Includes comprehensive reviews of essential boundary condition enforcement, quadrature in meshfree methods, and nonlinear aspects of meshfree analysis Discusses other Galerkin meshfree methods, strong form meshfree methods, and their comparisons Meshfree and Particle Methods: Fundamentals and Applications is the perfect introduction to meshfree methods for upper-level students in advanced numerical analysis courses, and is an invaluable reference for professionals in mechanical, aerospace, civil, and structural engineering, and related fields, who want to understand and apply these concepts directly, or effectively use commercial and other production meshfree and particle codes in their work.

Book Smoothed Finite Element Methods

Download or read book Smoothed Finite Element Methods written by G.R. Liu and published by CRC Press. This book was released on 2016-04-19 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generating a quality finite element mesh is difficult and often very time-consuming. Mesh-free methods operations can also be complicated and quite costly in terms of computational effort and resources. Developed by the authors and their colleagues, the smoothed finite element method (S-FEM) only requires a triangular/tetrahedral mesh to achieve mo

Book Finite Element Method

Download or read book Finite Element Method written by G.R. Liu and published by Elsevier. This book was released on 2003-02-21 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Finite Element Method (FEM) has become an indispensable technology for the modelling and simulation of engineering systems. Written for engineers and students alike, the aim of the book is to provide the necessary theories and techniques of the FEM for readers to be able to use a commercial FEM package to solve primarily linear problems in mechanical and civil engineering with the main focus on structural mechanics and heat transfer.Fundamental theories are introduced in a straightforward way, and state-of-the-art techniques for designing and analyzing engineering systems, including microstructural systems are explained in detail. Case studies are used to demonstrate these theories, methods, techniques and practical applications, and numerous diagrams and tables are used throughout.The case studies and examples use the commercial software package ABAQUS, but the techniques explained are equally applicable for readers using other applications including NASTRAN, ANSYS, MARC, etc. - A practical and accessible guide to this complex, yet important subject - Covers modeling techniques that predict how components will operate and tolerate loads, stresses and strains in reality

Book On the Evolution of Phase Boundaries

Download or read book On the Evolution of Phase Boundaries written by Morton E. Gurtin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications ON THE EVOLUTION OF PHASE BOUNDARIES is based on the proceedings of a workshop which was an integral part of the 1990- 91 IMA program on "Phase Transitions and Free Boundaries". The purpose of the workshop was to bring together mathematicians and other scientists working on the Stefan problem and related theories for modeling physical phenomena that occurs in two phase systems. We thank M.E. Gurtin and G. McFadden for editing the proceedings. We also take this opportunity to thank the National Science Foundation, whose financial support made the workshop possible. A vner Friedman Willard Miller, Jr. PREFACE A primary goal of the IMA workshop on the Evolution of Phase Boundaries from September 17-21, 1990 was to emphasize the interdisciplinary nature of contempo rary research in this field, research which combines ideas from nonlinear partial dif ferential equations, asymptotic analysis, numerical computation, and experimental science. The workshop brought together researchers from several disciplines, includ ing mathematics, physics, and both experimental and theoretical materials science.

Book Smoothed Point Interpolation Methods  G Space Theory And Weakened Weak Forms

Download or read book Smoothed Point Interpolation Methods G Space Theory And Weakened Weak Forms written by Gui-rong Liu and published by World Scientific. This book was released on 2013-08-16 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the widely used finite element method (FEM) and the latest Meshfree methods, a next generation of numerical method called Smoothed Point Interpolation Method (S-PIM) has been recently developed. The S-PIM is an innovative and effective combination of the FEM and the meshfree methods, and enables automation in computation, modeling and simulations — one of the most important features of the next generation methods. This important book describes the various S-PIM models in a systematic, concise and easy-to-understand manner. The underlying principles for the next generation of computational methods, G space theory, novel weakened weak (W2) formulations, techniques for shape functions, formulation procedures, and implementation strategies are presented in detail. Numerous examples are provided to demonstrate the efficiency and accuracy of the S-PIM solutions in comparison with the FEM and other existing methods. Effective techniques to compute solution bounds employing both S-PIM and FEM are highlighted to obtain certified solutions with both upper and lower bounds.The book also presents a systematically way to conduct adaptive analysis for solutions of desired accuracy using these bound properties, which is another key feature of the next generation of computational methods. This will benefit researchers, engineers and students who are venturing into new areas of research and computer code development.

Book Moving Particle Semi implicit Method

Download or read book Moving Particle Semi implicit Method written by Seiichi Koshizuka and published by Academic Press. This book was released on 2018-06-01 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Moving Particle Semi-implicit Method: A Meshfree Particle Method for Fluid Dynamics begins by familiarizing the reader with basic theory that supports their journey through sections on advanced MPH methods. The unique insights that this method provides include fluid-structure interaction, non-Newtonian flow, and cavitation, making it relevant to a wide range of applications in the mechanical, structural, and nuclear industries, and in bioengineering. Co-authored by the originator of the MPS method, this book is the most authoritative guide available. It will be of great value to students, academics and researchers in industry. - Presents the differences between MPH and SPH, helping readers choose between methods for different purposes - Provides pieces of computer code that readers can use in their own simulations - Includes the full, extended algorithms - Explores the use of MPS in a range of industries and applications, including practical advice

Book Analysis of the Smoothed Particle Hydrodynamics Method for Free surface Flows

Download or read book Analysis of the Smoothed Particle Hydrodynamics Method for Free surface Flows written by Areti Kiara and published by . This book was released on 2010 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Smoothed Particle Hydrodynamics (SPH) is a simple and attractive meshless Lagrangian particle method with applications in many fields such as astrophysics, hydrodynamics, magnetohydrodynamics, gas explosions, and granular flows that has demonstrated ability to simulate highly non-linear free-surface flows including wave overturning, jets, and the formation of spray and droplets. Despite the increasing popularity and promise of the method, SPH has a number of key issues that must be overcome before the method can realize its full potential in scientific and engineering applications: it is of low order, requires a high degree of tuning, and is inherently unstable. Additionally, there exists little analytic basis or fundamental understanding of the method to guide the many ad-hoc tuning and empirical fixes. The objective of this thesis is to perform an analytical and numerical investigation of the SPH method for free-surface flows. To this end, we perform a quantitative, unified analysis of the numerical method and the physics it captures, and we assess the method's consistency, stability, and convergence. It is shown that SPH introduces spurious solutions dominant in the dynamics of the solution making quantities such as velocity and pressure essentially unusable without filtering. It is also shown that the method is consistent inside the domain but imposes spurious, leading order, dynamic free-surface boundary conditions which alter the flow and further permit the introduction of spurious solutions. We further extend the analysis to address the effects of different empirical SPH treatments introduced in the literature, classifying these respectively as accuracy, consistency, or stability treatments, and characterizing their effectiveness. Based on the findings of the analysis, we eliminate the tuneable and empirical nature of the method by providing rational guidelines for the usage and effects of the relevant SPH treatments. Finally, we propose a modified SPH method that maintains the key features of SPH and significantly reduces spurious errors present in current SPH implementations. This thesis is among the first to provide a unified systematic analysis of the SPH method, shedding insight into the many proposed variations and fixes, and informs and guides new rational improvements to the method. This work lays the foundation for the development of SPH as a valuable engineering tool in the study of violent free-surface flows.