EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Error controlled Adaptive Finite Elements in Solid Mechanics

Download or read book Error controlled Adaptive Finite Elements in Solid Mechanics written by E. Ramm and published by John Wiley & Sons. This book was released on 2003 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite Element Methods are used for numerous engineering applications where numerical solutions of partial differential equations are needed. As computers can now deal with the millions of parameters used in these methods, automatic error estimation and automatic adaptation of the utilised method (according to this error estimation), has become a hot research topic. This text offers comprehensive coverage of this new field of automatic adaptation and error estimation, bringing together the work of eight outstanding researchers in this field who have completed a six year national research project within the German Science Foundation. The result is a state-of-the-art work in true reference style. Each chapter is self-contained and covers theoretical, algorithmic and software presentations as well as solved problems. A main feature consists of several carefully elaborated benchmarks of 2D- and 3D- applications. First book to go beyond the Finite Element Method in itself Covers material from a new research area Presents benchmarks of 2D- and 3D- applications Fits with the new trend for genetic strategies in engineering

Book The Finite Element Method  Solid mechanics

Download or read book The Finite Element Method Solid mechanics written by O. C. Zienkiewicz and published by Butterworth-Heinemann. This book was released on 2000 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hybrid Finite Element Methods for Non linear and Non smooth Problems in Solid Mechanics

Download or read book Hybrid Finite Element Methods for Non linear and Non smooth Problems in Solid Mechanics written by Linus Maximilian Wunderlich and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Adaptive Finite Elements in Linear and Nonlinear Solid and Structural Mechanics

Download or read book Adaptive Finite Elements in Linear and Nonlinear Solid and Structural Mechanics written by Erwin Stein and published by CISM International Centre for Mechanical Sciences. This book was released on 2005-08-03 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: The work deals with a systematic theoretical and problem-oriented treatment of fundamental topics in the wide area of error-controlled adaptive finite element methods for analyzing engineering structures with elastic and inelastic material behavior applied to engineering structures. Different types of error estimators are presented from both mathematical and engineering points of views: global estimators and goal-oriented estimators based on duality techniques, controlling h-, p-, and hp-adaptivity. Special features are: combined model and discretization adaptivity for thin-walled structures, hierarchic modeling in elasticity and related hp-adaptivity, error estimators of constitutive equations, adequate mesh refinement techniques and error-controlled adaptive elastic-plastic analysis of contact problems. The benefits are seen in new methods and results of leading researches in the field which provide deeper insight into recent developments of a posteriori error analysis and adaptivity.

Book Smoothed Point Interpolation Methods  G Space Theory And Weakened Weak Forms

Download or read book Smoothed Point Interpolation Methods G Space Theory And Weakened Weak Forms written by Gui-rong Liu and published by World Scientific. This book was released on 2013-08-16 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the widely used finite element method (FEM) and the latest Meshfree methods, a next generation of numerical method called Smoothed Point Interpolation Method (S-PIM) has been recently developed. The S-PIM is an innovative and effective combination of the FEM and the meshfree methods, and enables automation in computation, modeling and simulations — one of the most important features of the next generation methods. This important book describes the various S-PIM models in a systematic, concise and easy-to-understand manner. The underlying principles for the next generation of computational methods, G space theory, novel weakened weak (W2) formulations, techniques for shape functions, formulation procedures, and implementation strategies are presented in detail. Numerous examples are provided to demonstrate the efficiency and accuracy of the S-PIM solutions in comparison with the FEM and other existing methods. Effective techniques to compute solution bounds employing both S-PIM and FEM are highlighted to obtain certified solutions with both upper and lower bounds.The book also presents a systematically way to conduct adaptive analysis for solutions of desired accuracy using these bound properties, which is another key feature of the next generation of computational methods. This will benefit researchers, engineers and students who are venturing into new areas of research and computer code development.

Book Nonlinear Finite Element Analysis of Solids and Structures

Download or read book Nonlinear Finite Element Analysis of Solids and Structures written by René de Borst and published by John Wiley & Sons. This book was released on 2012-07-25 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Built upon the two original books by Mike Crisfield and their own lecture notes, renowned scientist René de Borst and his team offer a thoroughly updated yet condensed edition that retains and builds upon the excellent reputation and appeal amongst students and engineers alike for which Crisfield's first edition is acclaimed. Together with numerous additions and updates, the new authors have retained the core content of the original publication, while bringing an improved focus on new developments and ideas. This edition offers the latest insights in non-linear finite element technology, including non-linear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity. The authors' integrated and consistent style and unrivalled engineering approach assures this book's unique position within the computational mechanics literature. Key features: Combines the two previous volumes into one heavily revised text with obsolete material removed, an improved layout and updated references and notations Extensive new material on more recent developments in computational mechanics Easily readable, engineering oriented, with no more details in the main text than necessary to understand the concepts. Pseudo-code throughout makes the link between theory and algorithms, and the actual implementation. Accompanied by a website (www.wiley.com/go/deborst) with a Python code, based on the pseudo-code within the book and suitable for solving small-size problems. Non-linear Finite Element Analysis of Solids and Structures, 2nd Edition is an essential reference for practising engineers and researchers that can also be used as a text for undergraduate and graduate students within computational mechanics.

Book Non Linear Finite Element Analysis of Solids and Structures  Essentials

Download or read book Non Linear Finite Element Analysis of Solids and Structures Essentials written by M. A. Crisfield and published by Wiley. This book was released on 1996-10-29 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Global local Stress Analysis of Composite Panels

Download or read book Global local Stress Analysis of Composite Panels written by and published by . This book was released on 1989 with total page 62 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Scaled Boundary Finite Element Method

Download or read book The Scaled Boundary Finite Element Method written by Chongmin Song and published by John Wiley & Sons. This book was released on 2018-06-19 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.

Book Computational Contact Mechanics

Download or read book Computational Contact Mechanics written by Peter Wriggers and published by Springer Science & Business Media. This book was released on 2008-04-01 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems.

Book Numerical Methods in Contact Mechanics

Download or read book Numerical Methods in Contact Mechanics written by Vladislav A. Yastrebov and published by John Wiley & Sons. This book was released on 2013-02-13 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational contact mechanics is a broad topic which brings together algorithmic, geometrical, optimization and numerical aspects for a robust, fast and accurate treatment of contact problems. This book covers all the basic ingredients of contact and computational contact mechanics: from efficient contact detection algorithms and classical optimization methods to new developments in contact kinematics and resolution schemes for both sequential and parallel computer architectures. The book is self-contained and intended for people working on the implementation and improvement of contact algorithms in a finite element software. Using a new tensor algebra, the authors introduce some original notions in contact kinematics and extend the classical formulation of contact elements. Some classical and new resolution methods for contact problems and associated ready-to-implement expressions are provided. Contents: 1. Introduction to Computational Contact. 2. Geometry in Contact Mechanics. 3. Contact Detection. 4. Formulation of Contact Problems. 5. Numerical Procedures. 6. Numerical Examples. About the Authors Vladislav A. Yastrebov is a postdoctoral-fellow in Computational Solid Mechanics at MINES ParisTech in France. His work in computational contact mechanics was recognized by the CSMA award and by the Prix Paul Caseau of the French Academy of Technology and Electricité de France.

Book The Combined Finite Discrete Element Method

Download or read book The Combined Finite Discrete Element Method written by Antonio A. Munjiza and published by John Wiley & Sons. This book was released on 2004-04-21 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combined finite discrete element method is a relatively new computational tool aimed at problems involving static and / or dynamic behaviour of systems involving a large number of solid deformable bodies. Such problems include fragmentation using explosives (e.g rock blasting), impacts, demolition (collapsing buildings), blast loads, digging and loading processes, and powder technology. The combined finite-discrete element method - a natural extension of both discrete and finite element methods - allows researchers to model problems involving the deformability of either one solid body, a large number of bodies, or a solid body which fragments (e.g. in rock blasting applications a more or less intact rock mass is transformed into a pile of solid rock fragments of different sizes, which interact with each other). The topic is gaining in importance, and is at the forefront of some of the current efforts in computational modeling of the failure of solids. * Accompanying source codes plus input and output files available on the Internet * Important applications such as mining engineering, rock blasting and petroleum engineering * Includes practical examples of applications areas Essential reading for postgraduates, researchers and software engineers working in mechanical engineering.

Book TEXTBOOK OF FINITE ELEMENT ANALYSIS

Download or read book TEXTBOOK OF FINITE ELEMENT ANALYSIS written by P. SESHU and published by PHI Learning Pvt. Ltd.. This book was released on 2003-01-01 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for a one-semester course in Finite Element Method, this compact and well-organized text presents FEM as a tool to find approximate solutions to differential equations. This provides the student a better perspective on the technique and its wide range of applications. This approach reflects the current trend as the present-day applications range from structures to biomechanics to electromagnetics, unlike in conventional texts that view FEM primarily as an extension of matrix methods of structural analysis. After an introduction and a review of mathematical preliminaries, the book gives a detailed discussion on FEM as a technique for solving differential equations and variational formulation of FEM. This is followed by a lucid presentation of one-dimensional and two-dimensional finite elements and finite element formulation for dynamics. The book concludes with some case studies that focus on industrial problems and Appendices that include mini-project topics based on near-real-life problems. Postgraduate/Senior undergraduate students of civil, mechanical and aeronautical engineering will find this text extremely useful; it will also appeal to the practising engineers and the teaching community.

Book The Immersed Interface Method

Download or read book The Immersed Interface Method written by Zhilin Li and published by SIAM. This book was released on 2006-01-01 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the immersed interface method (IIM), a powerful numerical method for solving interface problems and problems defined on irregular domains for which analytic solutions are rarely available. This book gives a complete description of the IIM, discusses recent progress in the area, and describes numerical methods for a number of classic interface problems. It also contains many numerical examples that can be used as benchmark problems for numerical methods designed for interface problems on irregular domains.