EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Smarandache Curves and Spherical Indicatrices in the Galilean 3 Space

Download or read book Smarandache Curves and Spherical Indicatrices in the Galilean 3 Space written by H.S.Abdel-Aziz and published by Infinite Study. This book was released on with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present paper, Smarandache curves for some special curves in the threedimensional Galilean space G3are investigated. Moreover, spherical indicatrices for the helix as well as circular helix are introduced. Furthermore, some properties for these curves are given. Finally, in the light of this study, some related examples of these curves are provided.

Book Special Smarandache Curves with Respect to Darboux Frame in Galilean 3 Space

Download or read book Special Smarandache Curves with Respect to Darboux Frame in Galilean 3 Space written by Tevfik Sahin and published by Infinite Study. This book was released on with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present paper, we investigate special Smarandache curves with Darboux apparatus with respect to Frenet and Darboux frame of an arbitrary curve on a surface in the three-dimensional Galilean space G3.

Book Ruled and Rotational Surfaces Generated by Non Null Curves with Zero Weighted Curvature

Download or read book Ruled and Rotational Surfaces Generated by Non Null Curves with Zero Weighted Curvature written by Mustafa Altın and published by Infinite Study. This book was released on with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this study, firstly we give the weighted curvatures of non-null planar curves in Lorentz-Minkowski space with density eax2+by2 and obtain the planar curves whose weighted curvatures vanish in this space under the condition that the constants a and b are not zero at the same time. After giving the Frenet vectors of the non-null planar curves with zero weighted curvature in Lorentz-Minkowski space with density eax2 , we create the Smarandache curves of them.

Book Smarandache Curves for Spherical Indicatrix of the Bertrand Curves Pair

Download or read book Smarandache Curves for Spherical Indicatrix of the Bertrand Curves Pair written by Suleyman Senyurt and published by Infinite Study. This book was released on with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, we investigate special Smarandache curves with regard to Sabban frame for Bertrand partner curve spherical indicatrix. Some results have been obtained. These results were expressed depending on the Bertrand curve. Besides, we are given examples of our results.

Book Smarandache curves of some special curves in the Galilean 3 space

Download or read book Smarandache curves of some special curves in the Galilean 3 space written by H. S. Abdel-Aziz and published by Infinite Study. This book was released on with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present paper, we consider a position vector of an arbitrary curve in the three-dimensional Galilean space G3. Furthermore, we give some conditions on the curvatures of this arbitrary curve to study special curves and their Smarandache curves. Finally, in the light of this study, some related examples of these curves are provided and plotted.

Book A Simple Non Euclidean Geometry and Its Physical Basis

Download or read book A Simple Non Euclidean Geometry and Its Physical Basis written by I.M. Yaglom and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are many technical and popular accounts, both in Russian and in other languages, of the non-Euclidean geometry of Lobachevsky and Bolyai, a few of which are listed in the Bibliography. This geometry, also called hyperbolic geometry, is part of the required subject matter of many mathematics departments in universities and teachers' colleges-a reflec tion of the view that familiarity with the elements of hyperbolic geometry is a useful part of the background of future high school teachers. Much attention is paid to hyperbolic geometry by school mathematics clubs. Some mathematicians and educators concerned with reform of the high school curriculum believe that the required part of the curriculum should include elements of hyperbolic geometry, and that the optional part of the curriculum should include a topic related to hyperbolic geometry. I The broad interest in hyperbolic geometry is not surprising. This interest has little to do with mathematical and scientific applications of hyperbolic geometry, since the applications (for instance, in the theory of automorphic functions) are rather specialized, and are likely to be encountered by very few of the many students who conscientiously study (and then present to examiners) the definition of parallels in hyperbolic geometry and the special features of configurations of lines in the hyperbolic plane. The principal reason for the interest in hyperbolic geometry is the important fact of "non-uniqueness" of geometry; of the existence of many geometric systems.

Book A First Course in Differential Geometry

Download or read book A First Course in Differential Geometry written by Vaisman and published by CRC Press. This book was released on 1983-12-13 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book proposes a new approach which is designed to serve as an introductory course in differential geometry for advanced undergraduate students. It is based on lectures given by the author at several universities, and discusses calculus, topology, and linear algebra.

Book MATHEMATICAL COMBINATORICS  INTERNATIONAL BOOK SERIES

Download or read book MATHEMATICAL COMBINATORICS INTERNATIONAL BOOK SERIES written by Linfan MAO and published by Infinite Study. This book was released on 2013 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mathematical combinatorics is a subject that applying combinatorial notion to all mathematics and all sciences for understanding the reality of things in the universe, motivated by CC Conjecture of Dr.Linfan MAO on mathematical sciences. TheMathematical Combinatorics (International Book Series) is a fully refereed international book series with an ISBN number on each issue, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandachemulti-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.

Book Semi Riemannian Geometry With Applications to Relativity

Download or read book Semi Riemannian Geometry With Applications to Relativity written by Barrett O'Neill and published by Academic Press. This book was released on 1983-07-29 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest.

Book Differential Geometry

    Book Details:
  • Author : Wolfgang Kühnel
  • Publisher : American Mathematical Soc.
  • Release : 2006
  • ISBN : 0821839888
  • Pages : 394 pages

Download or read book Differential Geometry written by Wolfgang Kühnel and published by American Mathematical Soc.. This book was released on 2006 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.

Book Smarandache Geometries   Map Theories with Applications  I   English and Chinese

Download or read book Smarandache Geometries Map Theories with Applications I English and Chinese written by Linfan Mao and published by Infinite Study. This book was released on 2007 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: 800x600 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Smarandache Geometries as generalizations of Finsler, Riemannian, Weyl, and Kahler Geometries. A Smarandache geometry (SG) is a geometry which has at least one smarandachely denied axiom (1969). An axiom is said smarandachely denied (S-denied) if in the same space the axiom behaves differently (i.e., validated and invalided; or only invalidated but in at least two distinct ways). Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geometries may be united altogether, in the same space, by some SGs. These last geometries can be partially Euclidean and partially non-Euclidean. The novelty of the SG is the fact that they introduce for the first time the degree of negation in geometry, similarly to the degree of falsehood in fuzzy or neutrosophic logic. For example an axiom can be denied in percentage of 30 Also SG are defined on multispaces, i.e. unions of Euclidean and non-Euclidean subspaces, or unions of distinct non-Euclidean spaces. As an example of S-denying, a proposition , which is the conjunction of a set i of propositions, can be invalidated in many ways if it is minimally unsatisfiable, that is, such that the conjunction of any proper subset of the i is satisfied in a structure, but itself is not. Here it is an example of what it means for an axiom to be invalidated in multiple ways [2] : As a particular axiom let's take Euclid's Fifth Postulate. In Euclidean or parabolic geometry a line has one parallel only through a given point. In Lobacevskian or hyperbolic geometry a line has at least two parallels through a given point. In Riemannian or elliptic geometry a line has no parallel through a given point. Whereas in Smarandache geometries there are lines which have no parallels through a given point and other lines which have one or more parallels through a given point (the fifth postulate is invalidated in many ways). Therefore, the Euclid's Fifth Postulate (which asserts that there is only one parallel passing through an exterior point to a given line) can be invalidated in many ways, i.e. Smarandachely denied, as follows: - first invalidation: there is no parallel passing through an exterior point to a given line; - second invalidation: there is a finite number of parallels passing through an exterior point to a given line; - third invalidation: there are infinitely many parallels passing through an exterior point to a given line.

Book Spacelike and timelike admissible Smarandache curves in pseudo Galilean space

Download or read book Spacelike and timelike admissible Smarandache curves in pseudo Galilean space written by M. Khalifa Saad and published by Infinite Study. This book was released on with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, we study space and timelike admissible Smarandache curves in the pseudo-Galilean space. Also, we obtain Smarandache curves of the position vector of space and timelike arbitrary curve with some of its special curves. Finally, we defray and illustrate some examples to confirm our main results.

Book Smarandache curves in the Galilean 4 space G 4

Download or read book Smarandache curves in the Galilean 4 space G 4 written by M. Elzawy and published by Infinite Study. This book was released on with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, we study Smarandache curves in the 4-dimensional Galilean space G 4 . We obtain Frenet- Serret invariants for the Smarandache curve in G 4 . The first, second and third curvature of Smarandache curve are calculated. These values depending upon the first, second and third curvature of the given curve. Examples will be illustrated.

Book Noether s Theorems

    Book Details:
  • Author : Gennadi Sardanashvily
  • Publisher : Springer
  • Release : 2016-03-18
  • ISBN : 9462391718
  • Pages : 304 pages

Download or read book Noether s Theorems written by Gennadi Sardanashvily and published by Springer. This book was released on 2016-03-18 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.

Book Smarandache Curves in Terms of Sabban Frame of Spherical Indicatrix Curves

Download or read book Smarandache Curves in Terms of Sabban Frame of Spherical Indicatrix Curves written by Suleyman Senyurt and published by Infinite Study. This book was released on with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, we investigate special Smarandache curves in terms of Sabban frame of spherical indicatrix curves and we give some characterization of Smarandache curves. Besides, we illustrate examples of our results.

Book Differential Geometry Of Warped Product Manifolds And Submanifolds

Download or read book Differential Geometry Of Warped Product Manifolds And Submanifolds written by Bang-yen Chen and published by World Scientific. This book was released on 2017-05-29 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: A warped product manifold is a Riemannian or pseudo-Riemannian manifold whose metric tensor can be decomposed into a Cartesian product of the y geometry and the x geometry — except that the x-part is warped, that is, it is rescaled by a scalar function of the other coordinates y. The notion of warped product manifolds plays very important roles not only in geometry but also in mathematical physics, especially in general relativity. In fact, many basic solutions of the Einstein field equations, including the Schwarzschild solution and the Robertson-Walker models, are warped product manifolds.The first part of this volume provides a self-contained and accessible introduction to the important subject of pseudo-Riemannian manifolds and submanifolds. The second part presents a detailed and up-to-date account on important results of warped product manifolds, including several important spacetimes such as Robertson-Walker's and Schwarzschild's.The famous John Nash's embedding theorem published in 1956 implies that every warped product manifold can be realized as a warped product submanifold in a suitable Euclidean space. The study of warped product submanifolds in various important ambient spaces from an extrinsic point of view was initiated by the author around the beginning of this century.The last part of this volume contains an extensive and comprehensive survey of numerous important results on the geometry of warped product submanifolds done during this century by many geometers.

Book On Pseudospherical Smarandache Curves in Minkowski 3 Space

Download or read book On Pseudospherical Smarandache Curves in Minkowski 3 Space written by Esra Betul Koc Ozturk and published by Infinite Study. This book was released on with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper we define nonnull and nullpseudospherical Smarandache curves according to the Sabban frame of a spacelike curve lying on pseudosphere in Minkowski 3-space.