EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Statistical Bases of Reference Values in Laboratory Medicine

Download or read book Statistical Bases of Reference Values in Laboratory Medicine written by Eugene K. Harris and published by CRC Press. This book was released on 1995-07-07 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examining the strengths and limitations of various standards of accuracy in clinical laboratory analyses, this detailed reference presents an in-depth study of important theoretical and empirical issues concerning the description, collection, and application of reference values in laboratory medicine.

Book Ant Colony Optimization

Download or read book Ant Colony Optimization written by Marco Dorigo and published by MIT Press. This book was released on 2004-06-04 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.

Book Uncertainty Analysis of Experimental Data with R

Download or read book Uncertainty Analysis of Experimental Data with R written by Benjamin David Shaw and published by CRC Press. This book was released on 2017-07-06 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This would be an excellent book for undergraduate, graduate and beyond....The style of writing is easy to read and the author does a good job of adding humor in places. The integration of basic programming in R with the data that is collected for any experiment provides a powerful platform for analysis of data.... having the understanding of data analysis that this book offers will really help researchers examine their data and consider its value from multiple perspectives – and this applies to people who have small AND large data sets alike! This book also helps people use a free and basic software system for processing and plotting simple to complex functions." Michelle Pantoya, Texas Tech University Measurements of quantities that vary in a continuous fashion, e.g., the pressure of a gas, cannot be measured exactly and there will always be some uncertainty with these measured values, so it is vital for researchers to be able to quantify this data. Uncertainty Analysis of Experimental Data with R covers methods for evaluation of uncertainties in experimental data, as well as predictions made using these data, with implementation in R. The books discusses both basic and more complex methods including linear regression, nonlinear regression, and kernel smoothing curve fits, as well as Taylor Series, Monte Carlo and Bayesian approaches. Features: 1. Extensive use of modern open source software (R). 2. Many code examples are provided. 3. The uncertainty analyses conform to accepted professional standards (ASME). 4. The book is self-contained and includes all necessary material including chapters on statistics and programming in R. Benjamin D. Shaw is a professor in the Mechanical and Aerospace Engineering Department at the University of California, Davis. His research interests are primarily in experimental and theoretical aspects of combustion. Along with other courses, he has taught undergraduate and graduate courses on engineering experimentation and uncertainty analysis. He has published widely in archival journals and became an ASME Fellow in 2003.

Book R for Everyone

    Book Details:
  • Author : Jared P. Lander
  • Publisher : Addison-Wesley Professional
  • Release : 2017-06-13
  • ISBN : 0134546997
  • Pages : 1456 pages

Download or read book R for Everyone written by Jared P. Lander and published by Addison-Wesley Professional. This book was released on 2017-06-13 with total page 1456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Computation for Programmers, Scientists, Quants, Excel Users, and Other Professionals Using the open source R language, you can build powerful statistical models to answer many of your most challenging questions. R has traditionally been difficult for non-statisticians to learn, and most R books assume far too much knowledge to be of help. R for Everyone, Second Edition, is the solution. Drawing on his unsurpassed experience teaching new users, professional data scientist Jared P. Lander has written the perfect tutorial for anyone new to statistical programming and modeling. Organized to make learning easy and intuitive, this guide focuses on the 20 percent of R functionality you’ll need to accomplish 80 percent of modern data tasks. Lander’s self-contained chapters start with the absolute basics, offering extensive hands-on practice and sample code. You’ll download and install R; navigate and use the R environment; master basic program control, data import, manipulation, and visualization; and walk through several essential tests. Then, building on this foundation, you’ll construct several complete models, both linear and nonlinear, and use some data mining techniques. After all this you’ll make your code reproducible with LaTeX, RMarkdown, and Shiny. By the time you’re done, you won’t just know how to write R programs, you’ll be ready to tackle the statistical problems you care about most. Coverage includes Explore R, RStudio, and R packages Use R for math: variable types, vectors, calling functions, and more Exploit data structures, including data.frames, matrices, and lists Read many different types of data Create attractive, intuitive statistical graphics Write user-defined functions Control program flow with if, ifelse, and complex checks Improve program efficiency with group manipulations Combine and reshape multiple datasets Manipulate strings using R’s facilities and regular expressions Create normal, binomial, and Poisson probability distributions Build linear, generalized linear, and nonlinear models Program basic statistics: mean, standard deviation, and t-tests Train machine learning models Assess the quality of models and variable selection Prevent overfitting and perform variable selection, using the Elastic Net and Bayesian methods Analyze univariate and multivariate time series data Group data via K-means and hierarchical clustering Prepare reports, slideshows, and web pages with knitr Display interactive data with RMarkdown and htmlwidgets Implement dashboards with Shiny Build reusable R packages with devtools and Rcpp Register your product at informit.com/register for convenient access to downloads, updates, and corrections as they become available.

Book R in Action

    Book Details:
  • Author : Robert Kabacoff
  • Publisher : Manning Publications
  • Release : 2015-03-03
  • ISBN : 9781617291388
  • Pages : 475 pages

Download or read book R in Action written by Robert Kabacoff and published by Manning Publications. This book was released on 2015-03-03 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: R is a powerful language for statistical computing and graphics that can handle virtually any data-crunching task. It runs on all important platforms and provides thousands of useful specialized modules and utilities. This makes R a great way to get meaningful information from mountains of raw data. R in Action, Second Edition is a language tutorial focused on practical problems. Written by a research methodologist, it takes a direct and modular approach to quickly give readers the information they need to produce useful results. Focusing on realistic data analyses and a comprehensive integration of graphics, it follows the steps that real data analysts use to acquire their data, get it into shape, analyze it, and produce meaningful results that they can provide to clients. Purchase of the print book comes with an offer of a free PDF eBook from Manning. Also available is all code from the book.

Book Handbook on Geospatial Infrastructure in Support of Census Activities

Download or read book Handbook on Geospatial Infrastructure in Support of Census Activities written by and published by United Nations Publications. This book was released on 2009 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: The handbook demonstrates how the use and application of contemporary geospatial technologies and geographical databases are beneficial at all stages of the population and housing census process.

Book Handbook of Computational Econometrics

Download or read book Handbook of Computational Econometrics written by David A. Belsley and published by John Wiley & Sons. This book was released on 2009-08-18 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Computational Econometrics examines the state of the art of computational econometrics and provides exemplary studies dealing with computational issues arising from a wide spectrum of econometric fields including such topics as bootstrapping, the evaluation of econometric software, and algorithms for control, optimization, and estimation. Each topic is fully introduced before proceeding to a more in-depth examination of the relevant methodologies and valuable illustrations. This book: Provides self-contained treatments of issues in computational econometrics with illustrations and invaluable bibliographies. Brings together contributions from leading researchers. Develops the techniques needed to carry out computational econometrics. Features network studies, non-parametric estimation, optimization techniques, Bayesian estimation and inference, testing methods, time-series analysis, linear and nonlinear methods, VAR analysis, bootstrapping developments, signal extraction, software history and evaluation. This book will appeal to econometricians, financial statisticians, econometric researchers and students of econometrics at both graduate and advanced undergraduate levels.

Book Principles of Statistics for Engineers and Scientists

Download or read book Principles of Statistics for Engineers and Scientists written by William Cyrus Navidi and published by College Ie Overruns. This book was released on 2010 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles of Statistics for Engineers and Scientists offers the same crystal clear presentation of applied statistics as Bill Navidi's Statistics for Engineers and Scientists text, in a manner especially designed for the needs of a one-semester course that is focused on applications. By presenting ideas in the context of real-world data sets and with plentiful examples of computer output, the book is great for motivating students to understand the importance of statistics in their careers and their lives. The text features a unique approach highlighted by an engaging writing style that explains difficult concepts clearly and the use of contemporary real world data sets to help motivate students and show direct connections to industry and research. While focusing on practical applications of statistics, the text makes extensive use of examples to motivate fundamental concepts and to develop intuition.

Book Nonparametric Statistical Inference

Download or read book Nonparametric Statistical Inference written by Jean Dickinson Gibbons and published by CRC Press. This book was released on 2010-07-26 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proven Material for a Course on the Introduction to the Theory and/or on the Applications of Classical Nonparametric Methods Since its first publication in 1971, Nonparametric Statistical Inference has been widely regarded as the source for learning about nonparametric statistics. The fifth edition carries on this tradition while thoroughly revising at least 50 percent of the material. New to the Fifth Edition Updated and revised contents based on recent journal articles in the literature A new section in the chapter on goodness-of-fit tests A new chapter that offers practical guidance on how to choose among the various nonparametric procedures covered Additional problems and examples Improved computer figures This classic, best-selling statistics book continues to cover the most commonly used nonparametric procedures. The authors carefully state the assumptions, develop the theory behind the procedures, and illustrate the techniques using realistic research examples from the social, behavioral, and life sciences. For most procedures, they present the tests of hypotheses, confidence interval estimation, sample size determination, power, and comparisons of other relevant procedures. The text also gives examples of computer applications based on Minitab, SAS, and StatXact and compares these examples with corresponding hand calculations. The appendix includes a collection of tables required for solving the data-oriented problems. Nonparametric Statistical Inference, Fifth Edition provides in-depth yet accessible coverage of the theory and methods of nonparametric statistical inference procedures. It takes a practical approach that draws on scores of examples and problems and minimizes the theorem-proof format. Jean Dickinson Gibbons was recently interviewed regarding her generous pledge to Virginia Tech.

Book Investigating Statistical Concepts  Applications and Methods

Download or read book Investigating Statistical Concepts Applications and Methods written by Beth L. Chance and published by Duxbury Press. This book was released on 2006 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: INVESTIGATING STATISTICAL CONCEPTS, APPLICATIONS, AND METHODS (WITH CD-ROM) combines investigation and exposition to explore statistical ideas and techniques. Many of the investigations ask you to use technology such as statistical software and Java applets. A combination of practice, homework, and application problems emphasize actual studies.

Book Network Meta Analysis for Decision Making

Download or read book Network Meta Analysis for Decision Making written by Sofia Dias and published by John Wiley & Sons. This book was released on 2018-03-19 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to network meta-analysis with examples and code In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish which interventions are effective and cost-effective. Often a single study will not provide the answers and it is desirable to synthesise evidence from multiple sources, usually randomised controlled trials. This book takes an approach to evidence synthesis that is specifically intended for decision making when there are two or more treatment alternatives being evaluated, and assumes that the purpose of every synthesis is to answer the question "for this pre-identified population of patients, which treatment is 'best'?" A comprehensive, coherent framework for network meta-analysis (mixed treatment comparisons) is adopted and estimated using Bayesian Markov Chain Monte Carlo methods implemented in the freely available software WinBUGS. Each chapter contains worked examples, exercises, solutions and code that may be adapted by readers to apply to their own analyses. This book can be used as an introduction to evidence synthesis and network meta-analysis, its key properties and policy implications. Examples and advanced methods are also presented for the more experienced reader. Methods used throughout this book can be applied consistently: model critique and checking for evidence consistency are emphasised. Methods are based on technical support documents produced for NICE Decision Support Unit, which support the NICE Methods of Technology Appraisal. Code presented is also the basis for the code used by the ISPOR Task Force on Indirect Comparisons. Includes extensive carefully worked examples, with thorough explanations of how to set out data for use in WinBUGS and how to interpret the output. Network Meta-Analysis for Decision Making will be of interest to decision makers, medical statisticians, health economists, and anyone involved in Health Technology Assessment including the pharmaceutical industry.

Book R Companion to Elementary Applied Statistics

Download or read book R Companion to Elementary Applied Statistics written by Christopher Hay-Jahans and published by CRC Press. This book was released on 2019-01-02 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: The R Companion to Elementary Applied Statistics includes traditional applications covered in elementary statistics courses as well as some additional methods that address questions that might arise during or after the application of commonly used methods. Beginning with basic tasks and computations with R, readers are then guided through ways to bring data into R, manipulate the data as needed, perform common statistical computations and elementary exploratory data analysis tasks, prepare customized graphics, and take advantage of R for a wide range of methods that find use in many elementary applications of statistics. Features: Requires no familiarity with R or programming to begin using this book. Can be used as a resource for a project-based elementary applied statistics course, or for researchers and professionals who wish to delve more deeply into R. Contains an extensive array of examples that illustrate ideas on various ways to use pre-packaged routines, as well as on developing individualized code. Presents quite a few methods that may be considered non-traditional, or advanced. Includes accompanying carefully documented script files that contain code for all examples presented, and more. R is a powerful and free product that is gaining popularity across the scientific community in both the professional and academic arenas. Statistical methods discussed in this book are used to introduce the fundamentals of using R functions and provide ideas for developing further skills in writing R code. These ideas are illustrated through an extensive collection of examples. About the Author: Christopher Hay-Jahans received his Doctor of Arts in mathematics from Idaho State University in 1999. After spending three years at University of South Dakota, he moved to Juneau, Alaska, in 2002 where he has taught a wide range of undergraduate courses at University of Alaska Southeast.

Book Cure Models

    Book Details:
  • Author : Yingwei Peng
  • Publisher : CRC Press
  • Release : 2021-03-22
  • ISBN : 0429629680
  • Pages : 268 pages

Download or read book Cure Models written by Yingwei Peng and published by CRC Press. This book was released on 2021-03-22 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cure Models: Methods, Applications and Implementation is the first book in the last 25 years that provides a comprehensive and systematic introduction to the basics of modern cure models, including estimation, inference, and software. This book is useful for statistical researchers and graduate students, and practitioners in other disciplines to have a thorough review of modern cure model methodology and to seek appropriate cure models in applications. The prerequisites of this book include some basic knowledge of statistical modeling, survival models, and R and SAS for data analysis. The book features real-world examples from clinical trials and population-based studies and a detailed introduction to R packages, SAS macros, and WinBUGS programs to fit some cure models. The main topics covered include the foundation of statistical estimation and inference of cure models for independent and right-censored survival data, cure modeling for multivariate, recurrent-event, and competing-risks survival data, and joint modeling with longitudinal data, statistical testing for the existence and difference of cure rates and sufficient follow-up, new developments in Bayesian cure models, applications of cure models in public health research and clinical trials.

Book Statistical Analysis with R For Dummies

Download or read book Statistical Analysis with R For Dummies written by Joseph Schmuller and published by John Wiley & Sons. This book was released on 2017-03-20 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the world of R programming and analysis has never been easier Most guides to R, whether books or online, focus on R functions and procedures. But now, thanks to Statistical Analysis with R For Dummies, you have access to a trusted, easy-to-follow guide that focuses on the foundational statistical concepts that R addresses—as well as step-by-step guidance that shows you exactly how to implement them using R programming. People are becoming more aware of R every day as major institutions are adopting it as a standard. Part of its appeal is that it's a free tool that's taking the place of costly statistical software packages that sometimes take an inordinate amount of time to learn. Plus, R enables a user to carry out complex statistical analyses by simply entering a few commands, making sophisticated analyses available and understandable to a wide audience. Statistical Analysis with R For Dummies enables you to perform these analyses and to fully understand their implications and results. Gets you up to speed on the #1 analytics/data science software tool Demonstrates how to easily find, download, and use cutting-edge community-reviewed methods in statistics and predictive modeling Shows you how R offers intel from leading researchers in data science, free of charge Provides information on using R Studio to work with R Get ready to use R to crunch and analyze your data—the fast and easy way!

Book Climate Time Series Analysis

    Book Details:
  • Author : Manfred Mudelsee
  • Publisher : Springer Science & Business Media
  • Release : 2010-08-26
  • ISBN : 9048194822
  • Pages : 497 pages

Download or read book Climate Time Series Analysis written by Manfred Mudelsee and published by Springer Science & Business Media. This book was released on 2010-08-26 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers.

Book Principles and Practice of Public Health Surveillance

Download or read book Principles and Practice of Public Health Surveillance written by Steven M. Teutsch and published by Oxford University Press, USA. This book was released on 2000 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This text presents an organized approach to planning, developing, and implementing public health surveillance systems. It has a broad scope, discussing legal and ethical issues as well as technical problems"--Jacket cover.

Book Data Mining with Rattle and R

Download or read book Data Mining with Rattle and R written by Graham Williams and published by Springer Science & Business Media. This book was released on 2011-08-04 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings.