EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Single Cell Assessment of Genomic Mosaicism and Transcriptomic Heterogeneity in the Human Brain

Download or read book Single Cell Assessment of Genomic Mosaicism and Transcriptomic Heterogeneity in the Human Brain written by Gwendolyn Elizabeth Kaeser and published by . This book was released on 2017 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: The human cerebral cortex makes up approximately 82% of the total brain mass, has 52 distinct Brodmann areas, and contains approximately 16 billion neurons. In recent years, neuroscientists, geneticists, bioengineers, and bioinformaticians, by working in collaboration have only begun to scratch the surface towards understanding the enormous cellular complexity and heterogeneity that exists in our brains. My thesis work in has focused on the investigation of the immense diversity that comprises both the genomic and the transcriptomic landscapes of the human brain through the use of traditional, and newly engineered, single-cell technologies. Neuronal genomic mosaicism--the phenomenon wherein neurons possess unique somatically altered genomes--was first identified as mosaic aneuploidies, a gain or loss of an entire chromosome. In recent years, multiple labs have now demonstrated that the somatic genomic changes also include LINE-1 retrotransposons, both large (>10 megabases (Mb)) and small (

Book Characterizing Genomic Mosaicism in Single Neurons from Adult Human Brains

Download or read book Characterizing Genomic Mosaicism in Single Neurons from Adult Human Brains written by Andrew Richards and published by . This book was released on 2018 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: DNA copy number variations (CNVs) have previously been reported in human cortical neurons from non-diseased patients, but these alterations do not appear to be consistent from cell to cell and appear to be rare among neurons overall. Interestingly, Alzheimer's disease patients appear to have a higher prevalence of CNVs than non-diseased, although the biological significance of this observation is still largely unknown. Single-cell whole-genome next-generation sequencing holds promise to investigate these variations and the regions in which they occur in an unbiased manner. Unlike recent advances in single-cell RNA-seq, however, library preparation for single-cell DNA-seq suffers from extremely limited throughput. Furthermore, it is difficult to assess the significance of individual variations from whole-genome sequencing alone, particularly when control samples from non-diseased patients also show some variation at lower frequency. A potential solution is a multi-omics approach, in which information is collected about multiple species of biomolecules simultaneously from each sample, which taken together aid the interpretation of individual observations with respect to biological significance. This dissertation describes the design and development of a technology to physically separate DNA and RNA and to prepare sequencing libraries from each in parallel from limited starting samples without splitting, which we called Gel-seq. Thirty-two paired DNA and RNA sequencing libraries were successfully prepared from a variety of human and mouse cells lines and from mouse liver tissue using Gel-seq. Sample types could be clearly distinguished from each other based on either genomic copy number or transcriptomic profiles. This dissertation also describes the design and development of a technology to prepare a thousand single-cell whole-genome sequencing libraries in a single run. A proof-of-concept was performed with 87 cells from human and mouse lines. Copy number profiles agreed with bulk, and 96% and 92% of human and mouse cells, respectively, clustered correctly within their cell line based on copy number profile alone. These technologies will help to enable the unbiased characterization of genomic alterations not only in neurodegenerative disorders, but potentially also in other conditions associated with mosaic genomic backgrounds, such as cancer, microbiome disorders, or infectious diseases.

Book The Mouse Nervous System

    Book Details:
  • Author : Charles Watson
  • Publisher : Academic Press
  • Release : 2011-11-28
  • ISBN : 0123694973
  • Pages : 815 pages

Download or read book The Mouse Nervous System written by Charles Watson and published by Academic Press. This book was released on 2011-11-28 with total page 815 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mouse Nervous System provides a comprehensive account of the central nervous system of the mouse. The book is aimed at molecular biologists who need a book that introduces them to the anatomy of the mouse brain and spinal cord, but also takes them into the relevant details of development and organization of the area they have chosen to study. The Mouse Nervous System offers a wealth of new information for experienced anatomists who work on mice. The book serves as a valuable resource for researchers and graduate students in neuroscience. Systematic consideration of the anatomy and connections of all regions of the brain and spinal cord by the authors of the most cited rodent brain atlases A major section (12 chapters) on functional systems related to motor control, sensation, and behavioral and emotional states A detailed analysis of gene expression during development of the forebrain by Luis Puelles, the leading researcher in this area Full coverage of the role of gene expression during development and the new field of genetic neuroanatomy using site-specific recombinases Examples of the use of mouse models in the study of neurological illness

Book Introduction to Single Cell Omics

Download or read book Introduction to Single Cell Omics written by Xinghua Pan and published by Frontiers Media SA. This book was released on 2019-09-19 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Single-cell omics is a progressing frontier that stems from the sequencing of the human genome and the development of omics technologies, particularly genomics, transcriptomics, epigenomics and proteomics, but the sensitivity is now improved to single-cell level. The new generation of methodologies, especially the next generation sequencing (NGS) technology, plays a leading role in genomics related fields; however, the conventional techniques of omics require number of cells to be large, usually on the order of millions of cells, which is hardly accessible in some cases. More importantly, harnessing the power of omics technologies and applying those at the single-cell level are crucial since every cell is specific and unique, and almost every cell population in every systems, derived in either vivo or in vitro, is heterogeneous. Deciphering the heterogeneity of the cell population hence becomes critical for recognizing the mechanism and significance of the system. However, without an extensive examination of individual cells, a massive analysis of cell population would only give an average output of the cells, but neglect the differences among cells. Single-cell omics seeks to study a number of individual cells in parallel for their different dimensions of molecular profile on genome-wide scale, providing unprecedented resolution for the interpretation of both the structure and function of an organ, tissue or other system, as well as the interaction (and communication) and dynamics of single cells or subpopulations of cells and their lineages. Importantly single-cell omics enables the identification of a minor subpopulation of cells that may play a critical role in biological process over a dominant subpolulation such as a cancer and a developing organ. It provides an ultra-sensitive tool for us to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. Besides, it also empowers the clinical investigation of patients when facing a very low quantity of cell available for analysis, such as noninvasive cancer screening with circulating tumor cells (CTC), noninvasive prenatal diagnostics (NIPD) and preimplantation genetic test (PGT) for in vitro fertilization. Single-cell omics greatly promotes the understanding of life at a more fundamental level, bring vast applications in medicine. Accordingly, single-cell omics is also called as single-cell analysis or single-cell biology. Within only a couple of years, single-cell omics, especially transcriptomic sequencing (scRNA-seq), whole genome and exome sequencing (scWGS, scWES), has become robust and broadly accessible. Besides the existing technologies, recently, multiplexing barcode design and combinatorial indexing technology, in combination with microfluidic platform exampled by Drop-seq, or even being independent of microfluidic platform but using a regular PCR-plate, enable us a greater capacity of single cell analysis, switching from one single cell to thousands of single cells in a single test. The unique molecular identifiers (UMIs) allow the amplification bias among the original molecules to be corrected faithfully, resulting in a reliable quantitative measurement of omics in single cells. Of late, a variety of single-cell epigenomics analyses are becoming sophisticated, particularly single cell chromatin accessibility (scATAC-seq) and CpG methylation profiling (scBS-seq, scRRBS-seq). High resolution single molecular Fluorescence in situ hybridization (smFISH) and its revolutionary versions (ex. seqFISH, MERFISH, and so on), in addition to the spatial transcriptome sequencing, make the native relationship of the individual cells of a tissue to be in 3D or 4D format visually and quantitatively clarified. On the other hand, CRISPR/cas9 editing-based In vivo lineage tracing methods enable dynamic profile of a whole developmental process to be accurately displayed. Multi-omics analysis facilitates the study of multi-dimensional regulation and relationship of different elements of the central dogma in a single cell, as well as permitting a clear dissection of the complicated omics heterogeneity of a system. Last but not the least, the technology, biological noise, sequence dropout, and batch effect bring a huge challenge to the bioinformatics of single cell omics. While significant progress in the data analysis has been made since then, revolutionary theory and algorithm logics for single cell omics are expected. Indeed, single-cell analysis exert considerable impacts on the fields of biological studies, particularly cancers, neuron and neural system, stem cells, embryo development and immune system; other than that, it also tremendously motivates pharmaceutic RD, clinical diagnosis and monitoring, as well as precision medicine. This book hereby summarizes the recent developments and general considerations of single-cell analysis, with a detailed presentation on selected technologies and applications. Starting with the experimental design on single-cell omics, the book then emphasizes the consideration on heterogeneity of cancer and other systems. It also gives an introduction of the basic methods and key facts for bioinformatics analysis. Secondary, this book provides a summary of two types of popular technologies, the fundamental tools on single-cell isolation, and the developments of single cell multi-omics, followed by descriptions of FISH technologies, though other popular technologies are not covered here due to the fact that they are intensively described here and there recently. Finally, the book illustrates an elastomer-based integrated fluidic circuit that allows a connection between single cell functional studies combining stimulation, response, imaging and measurement, and corresponding single cell sequencing. This is a model system for single cell functional genomics. In addition, it reports a pipeline for single-cell proteomics with an analysis of the early development of Xenopus embryo, a single-cell qRT-PCR application that defined the subpopulations related to cell cycling, and a new method for synergistic assembly of single cell genome with sequencing of amplification product by phi29 DNA polymerase. Due to the tremendous progresses of single-cell omics in recent years, the topics covered here are incomplete, but each individual topic is excellently addressed, significantly interesting and beneficial to scientists working in or affiliated with this field.

Book Precision Medicine for Investigators  Practitioners and Providers

Download or read book Precision Medicine for Investigators Practitioners and Providers written by Joel Faintuch and published by Academic Press. This book was released on 2019-11-16 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Precision Medicine for Investigators, Practitioners and Providers addresses the needs of investigators by covering the topic as an umbrella concept, from new drug trials to wearable diagnostic devices, and from pediatrics to psychiatry in a manner that is up-to-date and authoritative. Sections include broad coverage of concerning disease groups and ancillary information about techniques, resources and consequences. Moreover, each chapter follows a structured blueprint, so that multiple, essential items are not overlooked. Instead of simply concentrating on a limited number of extensive and pedantic coverages, scholarly diagrams are also included. Provides a three-pronged approach to precision medicine that is focused on investigators, practitioners and healthcare providers Covers disease groups and ancillary information about techniques, resources and consequences Follows a structured blueprint, ensuring essential chapters items are not overlooked

Book Single Cell Sequencing and Systems Immunology

Download or read book Single Cell Sequencing and Systems Immunology written by Xiangdong Wang and published by Springer. This book was released on 2015-03-27 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume focuses on the genomics, proteomics, metabolomics, and bioinformatics of a single cell, especially lymphocytes and on understanding the molecular mechanisms of systems immunology. Based on the author’s personal experience, it provides revealing insights into the potential applications, significance, workflow, comparison, future perspectives and challenges of single-cell sequencing for identifying and developing disease-specific biomarkers in order to understand the biological function, activation and dysfunction of single cells and lymphocytes and to explore their functional roles and responses to therapies. It also provides detailed information on individual subgroups of lymphocytes, including cell characters, function, surface markers, receptor function, intracellular signals and pathways, production of inflammatory mediators, nuclear receptors and factors, omics, sequencing, disease-specific biomarkers, bioinformatics, networks and dynamic networks, their role in disease and future prospects. Dr. Xiangdong Wang is a Professor of Medicine, Director of Shanghai Institute of Clinical Bioinformatics, Director of Fudan University Center for Clinical Bioinformatics, Director of the Biomedical Research Center of Zhongshan Hospital, Deputy Director of Shanghai Respiratory Research Institute, Shanghai, China.

Book Neuroepigenomics in Aging and Disease

Download or read book Neuroepigenomics in Aging and Disease written by Raul Delgado-Morales and published by Springer. This book was released on 2017-05-18 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Epigenetic mechanisms (DNA modifications, histone alterations and non-coding RNAs) are crucial for transcriptional regulation and alterations of the “physiological epigenome” are increasingly associated with human diseases. During the last decade the emerging field of neuroepigenomics have started to impact tremendously in areas such learning and memory, addiction or neurodegeneration. This expert volume covers the role of epigenetic molecular mechanism in regulation of central nervous system’s function, one of the most exciting areas of contemporary molecular neuroscience. The book describes the current knowledge on the epigenetic basis of human disease covering the complete lifespan: from neurodevelopment/childhood (Rett Syndrome, Rubinstein-Taybi, autism), adolescence (eating disorders, drug addiction, anxiety), adulthood (depression, schizophrenia, amyotrophic lateral sclerosis, Huntington’s disease) and elderly (Alzheimer’s disease, Parkinson’s disease). The book also covers the three major players on neuroepigenomic mechanisms: histones alterations, DNA modifications and non-coding RNAs, their roles at the molecular and cellular level and the impact of their alterations on neuronal function and behavior. Finally, a special chapter on state-of-the-art technologies helps the reader not only to understand epigenetic driven changes in human cognition and diseases but also the methodology that will help to generate paradigm shifts on our understanding of brain function and the role of the neuroepigenome in human diseases.

Book Precision Medicine in Cancer Therapy

Download or read book Precision Medicine in Cancer Therapy written by Daniel D. Von Hoff and published by Springer. This book was released on 2019-06-17 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest advances in precision medicine in some of the most common cancer types, including hematological, lung and breast malignancies. It also discusses emerging technologies that are making a significant impact on precision medicine in cancer therapy. In addition to describing specific approaches that have already entered clinical practice, the book explores new concepts and tools that are being developed. Precision medicine aims to deliver personalized healthcare tailored to a patient’s genetics, lifestyle and environment, and cancer therapy is one of the areas in which it has flourished in recent years. Documenting the latest advances, this book is of interest to physicians and clinical fellows in the front line of the war on cancer, as well as to basic scientists working in the fields of cancer biology, drug development, biomarker discovery, and biomedical engineering. The contributing authors include translational physicians with first-hand experience in precision patient care.

Book Human Genetics and Genomics

Download or read book Human Genetics and Genomics written by Bruce R. Korf and published by John Wiley & Sons. This book was released on 2012-11-19 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fourth edition of the best-selling textbook, Human Genetics and Genomics, clearly explains the key principles needed by medical and health sciences students, from the basis of molecular genetics, to clinical applications used in the treatment of both rare and common conditions. A newly expanded Part 1, Basic Principles of Human Genetics, focuses on introducing the reader to key concepts such as Mendelian principles, DNA replication and gene expression. Part 2, Genetics and Genomics in Medical Practice, uses case scenarios to help you engage with current genetic practice. Now featuring full-color diagrams, Human Genetics and Genomics has been rigorously updated to reflect today’s genetics teaching, and includes updated discussion of genetic risk assessment, “single gene” disorders and therapeutics. Key learning features include: Clinical snapshots to help relate science to practice 'Hot topics' boxes that focus on the latest developments in testing, assessment and treatment 'Ethical issues' boxes to prompt further thought and discussion on the implications of genetic developments 'Sources of information' boxes to assist with the practicalities of clinical research and information provision Self-assessment review questions in each chapter Accompanied by the Wiley E-Text digital edition (included in the price of the book), Human Genetics and Genomics is also fully supported by a suite of online resources at www.korfgenetics.com, including: Factsheets on 100 genetic disorders, ideal for study and exam preparation Interactive Multiple Choice Questions (MCQs) with feedback on all answers Links to online resources for further study Figures from the book available as PowerPoint slides, ideal for teaching purposes The perfect companion to the genetics component of both problem-based learning and integrated medical courses, Human Genetics and Genomics presents the ideal balance between the bio-molecular basis of genetics and clinical cases, and provides an invaluable overview for anyone wishing to engage with this fast-moving discipline.

Book A Time for Metabolism and Hormones

Download or read book A Time for Metabolism and Hormones written by Paolo Sassone-Corsi and published by Springer. This book was released on 2016-04-04 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen spectacular advances in the field of circadian biology. These have attracted the interest of researchers in many fields, including endocrinology, neurosciences, cancer, and behavior. By integrating a circadian view within the fields of endocrinology and metabolism, researchers will be able to reveal many, yet-unsuspected aspects of how organisms cope with changes in the environment and subsequent control of homeostasis. This field is opening new avenues in our understanding of metabolism and endocrinology. A panel of the most distinguished investigators in the field gathered together to discuss the present state and the future of the field. The editors trust that this volume will be of use to those colleagues who will be picking up the challenge to unravel how the circadian clock can be targeted for the future development of specific pharmacological strategies toward a number of pathologies.

Book Precision Molecular Pathology of Glioblastoma

Download or read book Precision Molecular Pathology of Glioblastoma written by José Javier Otero and published by Springer Nature. This book was released on 2021-04-30 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a balanced and realistic review of the current state of glioblastoma, ranging from traditional histological review, molecular pathology of glioma, modern radiomics, neurosurgical focus, and integration of treatment plans by neuro-oncologists. The book reviews basic principles such as epidemiology and etiology, and modern 2016 WHO classification of CNS tumors. Chapters cover a general overview of common molecular techniques used in molecular pathology, molecular pathology in a developing country, key drivers of patient outcomes and predictors of response to radiation and/or chemotherapy treatment, and immunohistochemical surrogates for key molecular pathology. It concludes with reviews on radiomics, animal and stem cell models of glioblastoma, and a chapter on the emerging field of Glioblastoma Neuroscience. Precision Molecular Pathology of Glioblastoma is intended for pathology residents and fellows interested in glioblastoma, general surgical pathologists who need reviews on how to implement modern glioblastoma classification, as well as neuro-radiologists, oncologists, and radiation oncologists needing a holistic perspective to glioblastoma diagnosis and management.

Book Molecular Diagnostics  Promises and Possibilities

Download or read book Molecular Diagnostics Promises and Possibilities written by Mousumi Debnath and published by Springer Science & Business Media. This book was released on 2010-01-29 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rapid development in diverse areas of molecular biology and genetic engineering resulted in emergence of variety of tools. These tools are not only applicable to basic researches being carried out world over, but also exploited for precise detection of abnormal conditions in plants, animals and human body. Although a basic researcher is well versed with few techniques used by him/her in the laboratory, they may not be well acquainted with methodologies, which can be used to work out some of their own research problems. The picture is more blurred when the molecular diagnostic tools are to be used by physicians, scientists and technicians working in diagnostic laboratories in hospitals, industry and academic institutions. Since many of them are not trained in basics of these methods, they come across several gray areas in understanding of these tools. The accurate application of molecular diagnostic tools demands in depth understanding of the methodology for precise detection of the abnormal condition of living body. To meet the requirements of a good book on molecular diagnostics of students, physicians, scientists working in agricultural, veterinary, medical and pharmaceutical sciences, it needs to expose the reader lucidly to: Give basic science behind commonly used tools in diagnostics Expose the readers to detailed applications of these tools and Make them aware the availability of such diagnostic tools The book will attract additional audience of pathologists, medical microbiologists, pharmaceutical sciences, agricultural scientists and veterinary doctors if the following topics are incorporated at appropriate places in Unit II or separately as a part of Unit-III in the book. Molecular diagnosis of diseases in agricultural crops Molecular diagnosis of veterinary diseases. Molecular epidemiology, which helps to differentiate various epidemic strains and sources of disease outbreaks. Even in different units of the same hospital, the infections could be by different strains of the same species and the information becomes valuable for infection control strategies. Drug resistance is a growing problem for bacterial, fungal and parasitic microbes and the molecular biology tools can help to detect the drug resistance genes without the cultivation and in vitro sensitivity testing. Molecular diagnostics offers faster help in the selection of the proper antibiotic for the treatment of tuberculosis, which is a major problem of the in the developing world. The conventional culture and drug sensitivity testing of tuberculosis bacilli is laborious and time consuming, whereas molecular diagnosis offers rapid drug resistant gene detection even from direct clinical samples. The same approach for HIV, malaria and many more diseases needs to be considered. Molecular diagnostics in the detection of diseases during foetal life is an upcoming area in the foetal medicine in case of genetic abnormalities and infectious like TORCH complex etc. The book will be equally useful to students, scientists and professionals working in the field of molecular diagnostics.

Book Angiogenesis Assays

    Book Details:
  • Author : Carolyn A. Staton
  • Publisher : John Wiley & Sons
  • Release : 2007-01-11
  • ISBN : 047002934X
  • Pages : 410 pages

Download or read book Angiogenesis Assays written by Carolyn A. Staton and published by John Wiley & Sons. This book was released on 2007-01-11 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Angiogenesis, the development of new blood vessels from the existing vasculature, is essential for physiological growth and over 18,000 research articles have been published describing the role of angiogenesis in over 70 different diseases, including cancer, diabetic retinopathy, rheumatoid arthritis and psoriasis. One of the most important technical challenges in such studies has been finding suitable methods for assessing the effects of regulators of eh angiogenic response. While increasing numbers of angiogenesis assays are being described both in vitro and in vivo, it is often still necessary to use a combination of assays to identify the cellular and molecular events in angiogenesis and the full range of effects of a given test protein. Although the endothelial cell - its migration, proliferation, differentiation and structural rearrangement - is central to the angiogenic process, it is not the only cell type involved. the supporting cells, the extracellular matrix and the circulating blood with its cellular and humoral components also contribute. In this book, experts in the use of a diverse range of assays outline key components of these and give a critical appraisal of their strengths and weaknesses. Examples include assays for the proliferation, migration and differentiation of endothelial cells in vitro, vessel outgrowth from organ cultures, assessment of endothelial and mural cell interactions, and such in vivo assays as the chick chorioallantoic membrane, zebrafish, corneal, chamber and tumour angiogenesis models. These are followed by a critical analysis of the biological end-points currently being used in clinical trials to assess the clinical efficacy of anti-angiogenic drugs, which leads into a discussion of the direction future studies should take. This valuable book is of interest to research scientists currently working on angiogenesis in both the academic community and in the biotechnology and pharmaceutical industries. Relevant disciplines include cell and molecular biology, oncology, cardiovascular research, biotechnology, pharmacology, pathology and physiology.

Book Astrocytes in  Patho Physiology of the Nervous System

Download or read book Astrocytes in Patho Physiology of the Nervous System written by Vladimir Parpura and published by Springer Science & Business Media. This book was released on 2008-12-11 with total page 701 pages. Available in PDF, EPUB and Kindle. Book excerpt: Astrocytes were the original neuroglia that Ramón y Cajal visualized in 1913 using a gold sublimate stain. This stain targeted intermediate filaments that we now know consist mainly of glial fibrillary acidic protein, a protein used today as an astrocytic marker. Cajal described the morphological diversity of these cells with some ast- cytes surrounding neurons, while the others are intimately associated with vasculature. We start the book by discussing the heterogeneity of astrocytes using contemporary tools and by calling into question the assumption by classical neuroscience that neurons and glia are derived from distinct pools of progenitor cells. Astrocytes have long been neglected as active participants in intercellular communication and information processing in the central nervous system, in part due to their lack of electrical excitability. The follow up chapters review the “nuts and bolts” of ast- cytic physiology; astrocytes possess a diverse assortment of ion channels, neu- transmitter receptors, and transport mechanisms that enable the astrocytes to respond to many of the same signals that act on neurons. Since astrocytes can detect chemical transmitters that are released from neurons and can release their own extracellular signals there is an increasing awareness that they play physiological roles in regulating neuronal activity and synaptic transmission. In addition to these physiological roles, it is becoming increasingly recognized that astrocytes play critical roles during pathophysiological states of the nervous system; these states include gliomas, Alexander disease, and epilepsy to mention a few.

Book Molecular Genetic Pathology

Download or read book Molecular Genetic Pathology written by Liang Cheng and published by Springer. This book was released on 2013-03-05 with total page 1136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Genetic Pathology, Second Edition presents up-to-date material containing fundamental information relevant to the clinical practice of molecular genetic pathology. Fully updated in each area and expanded to include identification of new infectious agents (H1N1), new diagnostic biomarkers and biomarkers for targeted cancer therapy. This edition is also expanded to include the many new technologies that have become available in the past few years such as microarray (AmpliChip) and high throughput deep sequencing, which will certainly change the clinical practice of molecular genetic pathology. Part I examines the clinical aspects of molecular biology and technology, genomics. Poharmacogenomics and proteomics, while Part II covers the clinically relevant information of medical genetics, hematology, transfusion medicine, oncology, and forensic pathology. Supplemented with many useful figures and presented in a helpful bullet-point format, Molecular Genetic Pathology, Second Edition provides a unique reference for practicing pathologists, oncologists, internists, and medical genetisists. Furthermore, a book with concise overview of the field and highlights of clinical applications will certainly help those trainees, including pathology residents, genetics residents, molecular pathology fellows, internists, hematology/oncology fellows, and medical technologists in preparing for their board examination/certification.

Book Comparative Study of the Sensory Areas of the Human Cortex

Download or read book Comparative Study of the Sensory Areas of the Human Cortex written by Santiago Ramon y Cajal and published by Franklin Classics. This book was released on 2018-10-11 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Book Cancer Evolution

    Book Details:
  • Author : Charles Swanton
  • Publisher : Perspectives Cshl
  • Release : 2017
  • ISBN : 9781621821434
  • Pages : 350 pages

Download or read book Cancer Evolution written by Charles Swanton and published by Perspectives Cshl. This book was released on 2017 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tumor progression is driven by mutations that confer growth advantages to different subpopulations of cancer cells. As a tumor grows, these subpopulations expand, accumulate new mutations, and are subjected to selective pressures from the environment, including anticancer interventions. This process, termed clonal evolution, can lead to the emergence of therapy-resistant tumors and poses a major challenge for cancer eradication efforts. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Medicine examines cancer progression as an evolutionary process and explores how this way of looking at cancer may lead to more effective strategies for managing and treating it. The contributors review efforts to characterize the subclonal architecture and dynamics of tumors, understand the roles of chromosomal instability, driver mutations, and mutation order, and determine how cancer cells respond to selective pressures imposed by anticancer agents, immune cells, and other components of the tumor microenvironment. They compare cancer evolution to organismal evolution and describe how ecological theories and mathematical models are being used to understand the complex dynamics between a tumor and its microenvironment during cancer progression. The authors also discuss improved methods to monitor tumor evolution (e.g., liquid biopsies) and the development of more effective strategies for managing and treating cancers (e.g., immunotherapies). This volume will therefore serve as a vital reference for all cancer biologists as well as anyone seeking to improve clinical outcomes for patients with cancer.