EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Single and Multi junction Thin Film Silicon Solar Cells for Flexible Photovoltaics

Download or read book Single and Multi junction Thin Film Silicon Solar Cells for Flexible Photovoltaics written by Thomas Söderström and published by . This book was released on 2009 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Single and Multi junction Thin Film Silicon Solar Cells for Flexible Photovoltaics

Download or read book Single and Multi junction Thin Film Silicon Solar Cells for Flexible Photovoltaics written by and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates amorphous (a-Si:H) and microcrystalline (æc-Si:H) solar cells deposited by very high frequency plasma enhanced chemical vapor deposition (VHFPECVD) in the substrate (n-i-p) configuration. It focuses on processes that allow the use of non transparent and flexible substrates such as plastic foil with Tg 180°C like polyethylene-naphtalate (PEN). In the first part of the work, we concentrate on the light trapping properties of a variety of device configurations. One original test structure consists of n-i-p solar cells deposited directly on glass covered with low pressure chemical vapor deposition (LP-CVD) ZnO. For this device, silver is deposited below the LP-CVD ZnO or white paint is applied at the back of the glass as back reflector. This avoids the parasitic plasmonic absorptions in the back reflectors, which are observed for conventional rough metallic back contacts. Furthermore, the size and morphology of the LP-CVD ZnO are varied. The relation between the substrate morphology and the short circuit current density (Jsubsc/sub) is experimentally explored. As a result, the Jsc can be increased by 23% for a-Si:H and 28% for æc-Si:H solar cells compared to the case of flat substrate and the role of the size and shape can be clearly separated. We also explore the optical behavior of single and multijunction devices prepared with different back and front contacts. The back contact consists either of a 2D periodic grid with moderate slope, or of LP-CVD ZnO with random pyramids of various sizes. The front contacts are either a 70 nm thick, nominally flat ITO or a rough 2 æm thick LP-CVD ZnO. We observe that, for a-Si:H, the cell performance is critically dependent on the combination of thin flat or thick rough front TCOs and the back contact. Indeed, for a-Si:H, a thick LP-CVD ZnO front contact provides more light trapping on the 2D periodic substrate. The Jsubsc

Book Thin Film Solar Cells

Download or read book Thin Film Solar Cells written by Yoshihiro Hamakawa and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive book on thin-film solar cells, potentially a key technology for solving the energy production problem in the 21st century in an environmentally friendly way. It covers a wide range of scientific and technological aspects of thin film semiconductors - deposition technologies, growth mechanisms and the basic properties of amorphous and nano-crystalline silicon - as well as the optimum design theory and device physics of high-efficiency solar cells, especially of single-junction and multi-junction solar cells. The development of large-area solar cell modules using single and multi-junction solar cells is also considered. Examples of recent photovoltaic systems are presented and analysed.

Book Thin Film Silicon Solar Cells

Download or read book Thin Film Silicon Solar Cells written by Arvind Victor Shah and published by CRC Press. This book was released on 2010-08-19 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photovoltaic technology has now developed to the extent that it is close to fulfilling the vision of a "solar-energy world," as devices based on this technology are becoming efficient, low-cost and durable. This book provides a comprehensive treatment of thin-film silicon, a prevalent PV material, in terms of its semiconductor nature, startin

Book Thin Film Solar Cells

    Book Details:
  • Author : K. L. Chopra
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 1489904182
  • Pages : 615 pages

Download or read book Thin Film Solar Cells written by K. L. Chopra and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: "You, 0 Sun, are the eye of the world You are the soul of all embodied beings You are the source of all creatures You are the discipline of all engaged in work" - Translated from Mahabharata 3rd Century BC Today, energy is the lifeline and status symbol of "civilized" societies. All nations have therefore embarked upon Research and Development pro grams of varying magnitudes to explore and effectively utilize renewable sources of energy. Albeit a low-grade energy with large temporal and spatial variations, solar energy is abundant, cheap, clean, and renewable, and thus presents a very attractive alternative source. The direct conver sion of solar energy to electricity (photovoltaic effect) via devices called solar cells has already become an established frontier area of science and technology. Born out of necessity for remote area applications, the first commercially manufactured solar cells - single-crystal silicon and thin film CdS/Cu2S - were available well over 20 years ago. Indeed, all space vehicles today are powered by silicon solar cells. But large-scale terrestrial applications of solar cells still await major breakthroughs in terms of discovering new and radical concepts in solar cell device structures, utilizing relatively more abundant, cheap, and even exotic materials, and inventing simpler and less energy intensive fabrication processes. No doubt, this extraordinary challenge in R/D has led to a virtual explosion of activities in the field of photovoltaics in the last several years.

Book Thin Film Silicon Solar Cells

Download or read book Thin Film Silicon Solar Cells written by Arvind Shah and published by EPFL Press. This book was released on 2010-08-19 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photovoltaic technology has now developed to the extent that it is close to fulfilling the vision of a "solar-energy world," as devices based on this technology are becoming efficient, low-cost and durable. This book provides a comprehensive treatment of thin-film silicon, a prevalent PV material, in terms of its semiconductor nature, starting out with the physical properties, but concentrating on device applications. A special emphasis is given to amorphous silicon and microcrystalline silicon as photovoltaic materials, along with a model that allows these systems to be physically described in the simplest manner possible, thus allowing the student or scientist/engineer entering the field of thin-film electronics to master a few basic concepts that are distinct from those in the field of conventional semiconductors. The main part of the book deals with solar cells and modules by illustrating the basic functioning of these devices, along with their limitations, design optimization, testing and fabrication methods. Among the manufacturing processes discussed are plasma-assisted and hot-wire deposition, sputtering, and structuring techniques.

Book Amorphous and Microcrystalline Silicon Solar Cells  Modeling  Materials and Device Technology

Download or read book Amorphous and Microcrystalline Silicon Solar Cells Modeling Materials and Device Technology written by Ruud E.I. Schropp and published by Springer. This book was released on 2016-07-18 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Amorphous silicon solar cell technology has evolved considerably since the first amorphous silicon solar cells were made at RCA Laboratories in 1974. Scien tists working in a number of laboratories worldwide have developed improved alloys based on hydrogenated amorphous silicon and microcrystalline silicon. Other scientists have developed new methods for growing these thin films while yet others have developed new photovoltaic (PV) device structures with im proved conversion efficiencies. In the last two years, several companies have constructed multi-megawatt manufacturing plants that can produce large-area, multijunction amorphous silicon PV modules. A growing number of people be lieve that thin-film photovoltaics will be integrated into buildings on a large scale in the next few decades and will be able to make a major contribution to the world's energy needs. In this book, Ruud E. I. Schropp and Miro Zeman provide an authoritative overview of the current status of thin film solar cells based on amorphous and microcrystalline silicon. They review the significant developments that have occurred during the evolution of the technology and also discuss the most im portant recent innovations in the deposition of the materials, the understanding of the physics, and the fabrication and modeling of the devices.

Book Thin Film Solar Cells

    Book Details:
  • Author : Jef Poortmans
  • Publisher : John Wiley & Sons
  • Release : 2006-10-16
  • ISBN : 0470091266
  • Pages : 504 pages

Download or read book Thin Film Solar Cells written by Jef Poortmans and published by John Wiley & Sons. This book was released on 2006-10-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.

Book Recent Advances in Thin Film Photovoltaics

Download or read book Recent Advances in Thin Film Photovoltaics written by Udai P. Singh and published by Springer Nature. This book was released on 2022-09-02 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides recent development in thin-film solar cells (TFSC). TFSC have proven the promising approach for terrestrial and space photovoltaics. TFSC have the potential to change the device design and produce high efficiency devices on rigid/flexible substrates with significantly low manufacturing cost. TFSC have several advantages in manufacturing compared to traditional crystalline Si-solar cells like less requirement of materials, can be prepared with earth’s abundant materials, less processing steps, easy to dispose, etc. Several universities/research institutes/industry in India and abroad are involved in the research area of thin-film solar cells. The book helps the readers to find the details about different thin-film technologies and its advancement at one place. Each chapter covers properties of materials, its suitability for PV applications, simple manufacturing processes and recent and past literature survey. The issues related to the development of high efficiency TFSC devices over large area and its commercial and future prospects are discussed.

Book Solar Energy

    Book Details:
  • Author : Christoph Richter
  • Publisher : Springer
  • Release : 2012-11-29
  • ISBN : 9781461458050
  • Pages : 744 pages

Download or read book Solar Energy written by Christoph Richter and published by Springer. This book was released on 2012-11-29 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gathering some 30 entries from the Encyclopedia of Sustainability Science and Technology, this book presents fundamental principles and technologies for sustainably harnessing solar energy. Covers photovoltaics, solar thermal energy, solar radiation and more.

Book Multi junction Thin Film Solar Cells for an Optimal Light Harvesting

Download or read book Multi junction Thin Film Solar Cells for an Optimal Light Harvesting written by Paola Mantilla Pérez and published by . This book was released on 2017 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin film photovoltaics encompass a group of technologies able to harvest light within a few microns thickness. The reduced thickness allows a low cost of manufacture while making the films flexible and adaptable to different surfaces. This, combined with their low weight, positioned thin film solar cells as ideal candidates for building integrated photovoltaics. For the latter, organic solar cells (OSC) can provide a high quality semi-transparency that closely mimics the aesthetics of standard windows. Indeed, some unique features of organic solar cells make them the optimal solution for applications where standard Si technology cannot be used. However, for large-scale electricity production where efficiency is, perhaps, the most determining factor, newer thin film technologies like perovskites solar cells may be a more adequate option. At the moment of writing this thesis, state of the art efficiencies of single junction perovskites nearly double that of the best single junction organic solar cell. A limitation found in both technologies, especially in organics and to a lesser degree in perovskites, is the low mobility of the carriers. This, together with other processing shortcomings in the organic absorbers and perovskites limit their thickness to 100-130 nm, and 500-600 nm, respectively. In summary, light management must be an essential ingredient when designing device architectures to achieve the optimal performance in the specific application being considered. In this thesis, in order to achieve an optimal light harvesting and therefore increase the performance of thin film solar cells, we take two approaches. On one hand, we increase the total thickness of the absorber material used in the device without increasing the thickness of the single active material layer and, on the other hand, we combine complementary absorbers to cover a wider portion of the solar spectra. These approaches pose the double challenge of finding the optimal electromagnetic field distribution within a complicated multilayer structure containing two or more active layers, while at the same time implementing an effective charge collection or recombination in the intermediate layers connecting two adjacent sub-cells. In the case of OSC, we consider multi-junction cells where the same active material is used in all the junctions. This can be implemented by fabricating structures where the active layer thickness in each sub-cell does not exceed the 100 nm. For other types of thin film solar cells, we consider configurations using complementary absorbers. In both cases, but particularly in the former one, a systematic approach to optimize light absorption is needed. In order to obtain such optimal configurations, we implement an inverse integration approach combined with a transfer matrix calculation of the electric field. Furthermore, we develop several new approaches to optimize charge collection in the sub-cell interconnection layers which we apply to tandem, triple, 4-terminal and series-parallel configurations. The thesis has been organized into five chapters. Chapter 1 introduces concepts required for the development of the thesis work including the optical model. Chapter 2 describes the optical optimization and experimental implementation of current-matched multi-junction devices using PTB7:PC71BM, including applications. In order to profit from the advantage of electrically separated devices, Chapter 3 evaluates different types of 4-terminal architectures using PTB7:PC71BM and PTB7-Th:PC71BM. In one of the architectures we establish a serial-connection between sub-cells while in other we leave the sub-cells completely independent. Chapter 4 theoretically proposes a novel monolithic architecture combining perovskites and CIGS which does not require current-matching. Finally, in Chapter 5, an in-depth study of the semi-transparent inner electrodes is given that include vacuum-based and solution-processed layers.

Book Photovoltaics Beyond Silicon

Download or read book Photovoltaics Beyond Silicon written by Senthilarasu Sundaram and published by Elsevier. This book was released on 2024-07-01 with total page 819 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photovoltaics Beyond Silicon: Innovative Materials, Sustainable Processing Technologies, and Novel Device Structures presents the latest innovations in materials, processing and devices to produce electricity via advanced, sustainable photovoltaics technologies. The book provides an overview of the novel materials and device architectures that have been developed to optimize energy conversion efficiencies and minimize environmental impacts. Advances in technologies for harnessing solar energy are extensively discussed, with topics including materials processing, device fabrication, sustainability of materials and manufacturing, and the current state-of-the-art. Contributions from leading international experts discuss the applications, challenges and future prospects of research in this increasingly vital field, providing a valuable resource for students and researchers working in this area. - Presents a comprehensive overview and detailed discussion of solar energy technology options for sustainable energy conversion - Provides an understanding of the environmental challenges to be overcome and discusses the importance of efficient materials utilization for clean energy - Looks at how to design materials processing and optimize device fabrication, including metrics such as power-to-weight ratio, effectiveness at EOL compared to BOL, life-cycle analysis

Book Flexible Solar Cells

Download or read book Flexible Solar Cells written by Mario Pagliaro and published by John Wiley & Sons. This book was released on 2008-11-21 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the decline in the world's natural resources, the need for new and cheaper energy sources is evolving. One such source is the sun which generates heat and light which can be harnessed and used to our advantage. This reference book introduces the topic of photovoltaics in the form of flexible solar cells. There are explanations of the principles behind this technology, the engineering required to produce these products and the future possibilities offered by this technology. The chemistry and physics of the cells (both organic and inorganic) are clarified as well as production methods, with information how this can then be applied to the nanoscale as well. A complete guide to this new and exciting way of producing energy which will be invaluable to a variety of people from material scientists, chemists, electrical engineers, to management consultants and politicians.

Book Nanostructured Materials for Solar Energy Conversion

Download or read book Nanostructured Materials for Solar Energy Conversion written by Tetsuo Soga and published by Elsevier. This book was released on 2006-12-14 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured Materials for Solar Energy Conversion covers a wide variety of materials and device types from inorganic materials to organic materials. This book deals with basic semiconductor physics, modelling of nanostructured solar cell, nanostructure of conventional solar cells such as silicon, CIS and CdTe, dye-sensitized solar cell, organic solar cell, photosynthetic materials, fullerene, extremely thin absorber (ETA) solar cell, quantum structured solar cell, intermediate band solar cell, carbon nanotube, etc. including basic principle and the latest results. There are many books written on conventional p-n junction solar cells, but few books focus on new concepts in this area.* Focuses on the use of nanostructured materials for solar energy* Looks at a wide variety of materials and device types* Covers both organic and inorganic materials

Book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells

Download or read book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells written by Wilfried G. J. H. M. van Sark and published by Springer Science & Business Media. This book was released on 2011-11-16 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today’s solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.

Book Handbook of Photovoltaic Science and Engineering

Download or read book Handbook of Photovoltaic Science and Engineering written by Antonio Luque and published by John Wiley & Sons. This book was released on 2011-01-31 with total page 1172 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most comprehensive, authoritative and widely cited reference on photovoltaic solar energy Fully revised and updated, the Handbook of Photovoltaic Science and Engineering, Second Edition incorporates the substantial technological advances and research developments in photovoltaics since its previous release. All topics relating to the photovoltaic (PV) industry are discussed with contributions by distinguished international experts in the field. Significant new coverage includes: three completely new chapters and six chapters with new authors device structures, processing, and manufacturing options for the three major thin film PV technologies high performance approaches for multijunction, concentrator, and space applications new types of organic polymer and dye-sensitized solar cells economic analysis of various policy options to stimulate PV growth including effect of public and private investment Detailed treatment covers: scientific basis of the photovoltaic effect and solar cell operation the production of solar silicon and of silicon-based solar cells and modules how choice of semiconductor materials and their production influence costs and performance making measurements on solar cells and modules and how to relate results under standardised test conditions to real outdoor performance photovoltaic system installation and operation of components such as inverters and batteries. architectural applications of building-integrated PV Each chapter is structured to be partially accessible to beginners while providing detailed information of the physics and technology for experts. Encompassing a review of past work and the fundamentals in solar electric science, this is a leading reference and invaluable resource for all practitioners, consultants, researchers and students in the PV industry.

Book Silicon Based Thin Film Solar Cells

Download or read book Silicon Based Thin Film Solar Cells written by Roberto Murri and published by Bentham Science Publishers. This book was released on 2013-03-20 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Based Thin Film Solar Cells explains concepts related to technologies for silicon (Si) based photovoltaic applications. Topics in this book focus on ‘new concept’ solar cells. These kinds of cells can make photovoltaic power production an economically viable option in comparison to the bulk crystalline semiconductor technology industry. A transition from bulk crystalline Si solar cells toward thin-film technologies reduces usage of active material and introduces new concepts based on nanotechnologies. Despite its importance, the scientific development and understanding of new solar cells is not very advanced, and educational resources for specialized engineers and scientists are required. This textbook presents the fundamental scientific aspects of Si thin films growth technology, together with a clear understanding of the properties of the material and how this is employed in new generation photovoltaic solar cells. The textbook is a valuable resource for graduate students working on their theses, young researchers and all people approaching problems and fundamental aspects of advanced photovoltaic conversion.