EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book CFD simulations of particle laden flows  Particle transport and separation

Download or read book CFD simulations of particle laden flows Particle transport and separation written by David Schellander and published by Anchor Academic Publishing (aap_verlag). This book was released on 2014-02-01 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study presents the basic models for discrete and continuous particle laden flow simulation. An overview of the two main approaches, the Lagrangian discrete particle model and the Eulerian granular phase model is given. Moreover these two approaches are combined to a hybrid model to use the benefits of the discrete and continuous description. This safes computational time and increase the efficiency of particle laden flow simulations. Furthermore the models are extended to poly-disperse particles including a simple agglomeration model based on a population balance equation. Finally the usability of the models is shown at a pneumatic particle transport system including particle strand building and the separation of particles using an industrial cyclone.

Book Particle Laden Flow

    Book Details:
  • Author : Bernard Geurts
  • Publisher : Springer Science & Business Media
  • Release : 2007-08-27
  • ISBN : 1402062176
  • Pages : 409 pages

Download or read book Particle Laden Flow written by Bernard Geurts and published by Springer Science & Business Media. This book was released on 2007-08-27 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a selection of the papers that were presented at the EUROMECH colloquium on particle-laden flow held at the University of Twente in 2006. The multiscale nature of this challenging field motivated the calling of the colloquium and reflects the central importance that the dispersion of particles in a flow has in various geophysical and environmental problems. The spreading of aerosols and soot in the air, the growth and dispersion of plankton blooms in seas and oceans, or the transport of sediment in rivers, estuaries and coastal regions are striking examples.

Book Simulations of Particle laden Flows

Download or read book Simulations of Particle laden Flows written by Dazhi Guo and published by . This book was released on 2002 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling Approaches and Computational Methods for Particle laden Turbulent Flows

Download or read book Modeling Approaches and Computational Methods for Particle laden Turbulent Flows written by Shankar Subramaniam and published by Academic Press. This book was released on 2022-10-20 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling Approaches and Computational Methods for Particle-laden Turbulent Flows introduces the principal phenomena observed in applications where turbulence in particle-laden flow is encountered while also analyzing the main methods for analyzing numerically. The book takes a practical approach, providing advice on how to select and apply the correct model or tool by drawing on the latest research. Sections provide scales of particle-laden turbulence and the principal analytical frameworks and computational approaches used to simulate particles in turbulent flow. Each chapter opens with a section on fundamental concepts and theory before describing the applications of the modelling approach or numerical method. Featuring explanations of key concepts, definitions, and fundamental physics and equations, as well as recent research advances and detailed simulation methods, this book is the ideal starting point for students new to this subject, as well as an essential reference for experienced researchers. - Provides a comprehensive introduction to the phenomena of particle laden turbulent flow - Explains a wide range of numerical methods, including Eulerian-Eulerian, Eulerian-Lagrange, and volume-filtered computation - Describes a wide range of innovative applications of these models

Book Simulation and Modeling of Particle laden Flows

Download or read book Simulation and Modeling of Particle laden Flows written by Kulwinder Singh and published by . This book was released on 2004 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book IUTAM Symposium on Computational Approaches to Multiphase Flow

Download or read book IUTAM Symposium on Computational Approaches to Multiphase Flow written by S. Balachandar and published by Springer Science & Business Media. This book was released on 2007-01-28 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a broad overview of the full spectrum of state-of-the-art computational activities in multiphase flow as presented by top practitioners in the field. It starts with well-established approaches and builds up to newer methods. These methods are illustrated with applications to a broad spectrum of problems involving particle dispersion and deposition, turbulence modulation, environmental flows, fluidized beds, bubbly flows, and many others.

Book Hybrid Particle Laden Flow Modelling

Download or read book Hybrid Particle Laden Flow Modelling written by David Schellander and published by GRIN Verlag. This book was released on 2013-09-20 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: Doctoral Thesis / Dissertation from the year 2013 in the subject Engineering - Mechanical Engineering, grade: 1, University of Linz (Department on Particulate Flow Modelling), language: English, abstract: The numerical hybrid model EUgran+, which is an Eulerian-Eulerian granular phase model extended with models from the Eulerian-Lagrangian model for dense rapid particulate flows, is modified to account for poly-dispersed particle diameter distributions. These modifications include the implementation of I) a new poly-dispersed drag law and of II) new particle boundary conditions distinguishing between sliding and non-sliding particle-wall collisions and III) a new implementation of the population balance equation in the agglomeration model using the Eulerian-Lagrangian approach, referred to as Bus-stop model. Further, the applicability of the EUgran+ model is extended to cover dilute to dense poly-disperse particulate flows. Furthermore, this provides an improvement in the numerical simulation of dust separation and the formation of particle strands in industrial scale cyclones. In this PHD thesis, the EUgran+Poly model is validated at 3 specific cases with different mass loadings: I) poly-dispersed particle conveying in a square pipe with a 90 degree bend at low mass loading (L = 0:00206); II) a particle conveying case in a rectangular pipe with a double-loop at high mass loading (L = 1:5); III) in a vertical pipe the implementation of the agglomeration model is validated. To show the applicability of the presented models a simulation of an industrial cyclone in experimental scale is presented. The validation and application shows that considering a poly-disperse Eulerian-Eulerian granular phase improves the accordance of the simulation results with measurements significantly. Finally, the hybrid model is a good compromise for a computational efficient simulation of particulate transport and separation with different mass loading regimes.

Book Turbulent Particle Laden Gas Flows

Download or read book Turbulent Particle Laden Gas Flows written by Aleksei Y. Varaksin and published by Springer Science & Business Media. This book was released on 2007-07-05 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents results of experimental and theoretical studies of "gas-solid particles" turbulent two-phase flows. It analyzes the characteristics of heterogeneous flows in channels (pipes), as well as those in the vicinity of the critical points of bodies subjected to flow and in the boundary layer developing on their surface. Coverage also treats in detail problems of physical simulation of turbulent gas flows which carry solid particles.

Book Mesoscale Simulation and Analysis of Particle laden Flows

Download or read book Mesoscale Simulation and Analysis of Particle laden Flows written by Ravi Ghanshyam Patel and published by . This book was released on 2018 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation covers four topics relevant for particle-laden flow simulation and modeling. First we perform verification of three techniques for mesoscale simulation of particle-laden flows: the volume filtered Euler-Lagrange method, the two fluid model, and the anisotropic Gaussian method. We verify that statistics from Euler-Lagrange simulations of cluster-induced turbulence (CIT) can be extracted with weak parameter sensitivity. These statistics were also found to match well with CIT simulations using the anisotropic Gaussian method. Next, we use the volume filtered Euler-Lagrange method to perform simulations of homogeneous shear cluster-induced turbulence (HSCIT). We find the evolution of HSCIT to be strongly dependent on the relative orientation of shear and gravity. Third, we provide a 3-D extension to the conditional hyperbolic method of moments (CHyQMOM) for mesoscale particle-laden flows. CHyQMOM is a high order, hyperbolic closure to the kinetic moment equations. Lastly, we introduce a regression technique combining Fourier pseudospectral numerical methods and neural networks for finding nonlinear spatial operators from data.

Book A Numerical Method for Interface resolving Simulations of Particle laden Flows with Collisions

Download or read book A Numerical Method for Interface resolving Simulations of Particle laden Flows with Collisions written by Tobias Kempe and published by . This book was released on 2013-12-19 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling and Direct Numerical Simulation of Particle laden Turbulent Flows

Download or read book Modeling and Direct Numerical Simulation of Particle laden Turbulent Flows written by Ying Xu and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Mesoscopic Formalism for Simulating Particle laden Flows with Applications in Energy Conversion Processes

Download or read book A Mesoscopic Formalism for Simulating Particle laden Flows with Applications in Energy Conversion Processes written by Jesse Samuel Capecelatro and published by . This book was released on 2014 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The non-linear and multiscale nature of turbulent flows is further complicated in the presence of inertial particles. Intimate coupling between the phases may lead to a high degree of spatial segregation that reorganizes the structure of the underlying turbulence. The wide range of relevant length and timescales associated with fluidparticle systems poses significant challenges in understanding and predicting their behavior. In recent years, the advent of petascale computing has enabled the direct numerical simulation (DNS) of large-scale turbulent flows, though DNS of particle-laden flows remains severely limited. This work presents methods to alleviate previous numerical constraints on the computational grid when considering finite-size particles. Volume filtered equations for the carrier phase are derived in detail for variable-density flows in the presence of particles and solved in a highly-scalable Eulerian-Lagrangian framework. The filter introduces a separation in length-scales during the interphase exchange process, where everything smaller than the support of the filtering kernel requires modeling (e.g., surface reactions and drag), and everything larger than the support of the filtering kernel is captured explicitly. To remain computationally tractable, the filtering procedure is solved in two steps, by first transferring the particle information to the nearest neighboring cells, and then making use of an implicit diffusion operation. In flows that exhibit strong spatial segregation in particle concentration, a separation of length scales must be established when extracting Lagrangian statistics. To accomplish this, an adaptive spatial filter is employed on the particle data with an averaging volume that varies with the local particle-phase volume fraction. The filtered Euler-Lagrange formalism is shown to yield highly accurate and physical results for large-scale particle-laden flows from the dilute to dense regime. An analysis of chemically reacting species in circulating fluidized bed risers reveals that the non-homogeneities caused by the formation of clusters significantly reduces the efficiency of the conversion process. To better understand the fundamental nature of particle clustering and its effects on the carrier-phase turbulence, a canonical flow is introduced, referred to as cluster-induced turbulence (CIT). Simulations of fully-developed, gravity-driven CIT are investigated, revealing for the first time the local instantaneous distribution of particle-phase dynamics in collisional gas-solid flows.

Book Simulations of Particle laden Channel Flow with Two way Coupling

Download or read book Simulations of Particle laden Channel Flow with Two way Coupling written by Yiming Li and published by . This book was released on 1998 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Fluid Dynamics for the Petrochemical Process Industry

Download or read book Computational Fluid Dynamics for the Petrochemical Process Industry written by R.V.A. Oliemans and published by Springer. This book was released on 2012-11-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second of the 1989 conferences in the Shell Conference Series, held from 10 to 12 December in the Netherlands and organized by Koninklijke/Shell-Laboratorium, Amsterdam, was on "Computational Fluid Dynamics for Petrochemical Process Equip ment". The objective was to generate a shared perspective on the subject with respect to its role in the design of equipment involving complex flows. The conference was attended by scientists from four Shell laboratories and experts from universities in the USA, France, Great Britain, Germany and The Netherlands. R. V. A. Oliemans, G. Ooms and T. M. M. Verheggen formed the organizing committee. Complexities in fluid flow may arise from equipment geometry and/or the fluids themselves, which can be mUlti-component, single-phase or multiphase. Pressure and temperature gradients and any reactivity of components in the flow stream can be additional factors. Four themes were addressed: turbulent reacting and non-reacting flow, dispersed multiphase flow, separated two-phase flow and fluid flow simulation tools. The capabilities and limitations of a sequence of turbulence flow models, from the relatively simple k-£ model to direct numerical simulation and large eddy turbulence flow models, were considered for a range of petrochemical process equipment. Flow stability aspects and the potential of cellular automata for the simulation of industrial flows also received attention. The papers published in this special issue of Applied Scientific Research provide a fair representation of the Computational Fluid Dynamics topics discussed in the context of their application to petrochemical process equipment.

Book Simulation of Turbulent Particle laden Flows and Their Electrostatic Charging

Download or read book Simulation of Turbulent Particle laden Flows and Their Electrostatic Charging written by Holger Grosshans and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Experiments and Simulations of Particle laden Turbulent Shear Flows

Download or read book Experiments and Simulations of Particle laden Turbulent Shear Flows written by Stefan Horender and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modelling and Simulations of Contacts in Particle Laden Flows

Download or read book Modelling and Simulations of Contacts in Particle Laden Flows written by Baptiste Lambert and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particle-laden flows can be found in many industrial applications such as slurry transport or the chemical industry in general. In mixtures made of solid particles emerged in a viscous fluid, particle interactions play an essential role in the overall mixture viscosity. The suspension phenomenon is caused by short-range hydrodynamic interactions, known as lubrication. Lubrication forces are usually underestimated due to their singularities and the spatial discretization of the numerical schemes. In this thesis, we propose a lubrication model for a coupled volume penalization method and discrete element method solver that estimates the unresolved hydrodynamic forces and torques in incompressible Navier-Stokes flows. Corrections are made locally on the surfaces of the interacting particles without any assumption on the global particle shapes. The final version of the local lubrication model can be used for suspension of convex particles without any tabulations. The numerical method has been validated against experimental data with spherical and ellipsoidal particles. With spherical particles, the lubrication model performs as well as existing numerical models that are limited to this specific particle shape. The model compatibility with convex particles has been validated by comparing simulations using ellipsoids to experimental measurements we made.