EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Oil Recovery by Using CO2 as an Additive for Steam Injection

Download or read book Oil Recovery by Using CO2 as an Additive for Steam Injection written by Muhammad Aslam and published by . This book was released on 1993 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book CO2 Storage Coupled with Enhanced Oil Recovery

Download or read book CO2 Storage Coupled with Enhanced Oil Recovery written by Kun Sang Lee and published by Springer Nature. This book was released on 2020-03-09 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and detailed description of the various mechanisms of the CCS–EOR process. Whereas previous texts have primarily focused on carbon capture and storage (CCS) and enhanced oil recovery (EOR) separately, this book provides a general overview of both technologies when used together. Coupled CCS–EOR technology has become increasingly important, as it overcomes the respective shortcomings of the two technologies. The book presents an integrated numerical model including the hysteresis effect, solubility trapping, miscibility, and formation damage by asphaltene deposition. The experimental and model-based evaluation of fluid properties is also discussed. The book concludes by discussing the latest research into CO2 storage coupled with EOR, most notably performance control by including additives in CO2 injection, and CO2 injection into shale reservoirs. Ideally suited for graduate students and researchers in the fields of carbon capture, utilisation, and storage, the book shares essential insights into maximising the efficiency of CCS and EOR alike.

Book Masters Theses in the Pure and Applied Sciences

Download or read book Masters Theses in the Pure and Applied Sciences written by Wade H. Shafer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 39 (thesis year 1994) a total of 13,953 thesis titles from 21 Canadian and 159 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 39 reports theses submitted in 1994, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.

Book Alternating Injection of Steam and CO2 for Thermal Recovery of Heavy Oil

Download or read book Alternating Injection of Steam and CO2 for Thermal Recovery of Heavy Oil written by Kazeem Akintayo Lawal and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Comprehensive Study of CO2 Enhanced Oil Recovery in the Langgak Field

Download or read book A Comprehensive Study of CO2 Enhanced Oil Recovery in the Langgak Field written by Dr.-Eng, Muslim and published by UIR Press. This book was released on 2021-04-08 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on the laboratory and field research on Langgak Field, operated by SPR Langgak as one of Province-Owned Oil Company. This book is written to be a guideline and to add knowledge related to enhanced oil recovery (EOR) activity, particularly CO2 Injection. The authors are aware that the information about EOR activity in Indonesia is still limited, so with the presence of this book, we hope it can be made as a reference, not only for students but also for engineers and other researchers who would like to carry out or perform EOR project using CO2 Injection. The authors realize that there are some flaws in the completion of this book. Nonetheless, the authors believe this book will serve as a foundation for other CO2 EOR projects in Indonesia and improve the readers' understanding of CO2 Injection activity. Special thanks are given to the Director of PT. SPR Langgak, Mr Ikin Faizal, who gave us excellent support in the making of this book.

Book Heavy Crude Oil Recovery

    Book Details:
  • Author : E. Okandan
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 9400961405
  • Pages : 431 pages

Download or read book Heavy Crude Oil Recovery written by E. Okandan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within the last 10 years the world has come to a point where the easily explorable oil deposits have now been found, and it is anticipated that such deposits will be depleted by the beginning of the Twenty-first Century. However, the increasing demand of man kind for energy has caused technologists to look into ways of find ing new sources or to reevaluat:e unconventional sources which, in the past, have not been economical. In this respect, heavy crude and tar sand oils are becoming important in fulfilling the world's energy requirements. What are heavy crude and tar sand oils? There is still some confusion as to their definitions, inasmuch as they vary among organizations and countries. In an effort to set agreed meanings, UNITAR, in a meeting in February 1982 in Venezuela, proposed the following definitions (see also Table 1): 1. Heavy crude oil and tar sand oil are petroleum or petroleum like liquids or semi-solids naturally occurring in porous media. The porous media are sands, sandstone, and carbonate rocks. 2. These oils will be characterized by viscosity and density. Viscosity will be used to define heavy crude oil and tar sand oil, and density (oAPI) will be used when viscosity measurements are not available. 3. Heavy crude oil has a gas-free viscosity of 100-10000 mPa.s (cp) 3 o at reservoir temperatures, or a density of 943 kg/m (20 API) 3 o o to 1000 kg/m (10 API) at 15.6 C and at atmospheric oressure.

Book Numerical Simulation of Oil Recovery by Steam Injection

Download or read book Numerical Simulation of Oil Recovery by Steam Injection written by Craig Irwin Beattie and published by . This book was released on 1980 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Experimental and Simulation Studies to Evaluate the Improvement of Oil Recovery by Different Modes of CO2 Injection in Carbonate Reservoirs

Download or read book Experimental and Simulation Studies to Evaluate the Improvement of Oil Recovery by Different Modes of CO2 Injection in Carbonate Reservoirs written by Ahmed Abdulaziz S. Aleidan and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental and numerical simulation studies were conducted to investigate the improvement of light oil recovery in carbonate cores during CO2 injection. The main steps in the study are as follows. First, the minimum miscibility pressure of 31°API west Texas oil and CO2 was measured using the slimtube (miscibility) apparatus. Second, miscible CO2 coreflood experiments were carried out on different modes of injection such as CGI, WF, WAG, and SWAG. Each injection mode was conducted on unfractured and fractured cores. Fractured cores included two types of fracture systems creating two shape models on the core. Also, runs were made with different salinity levels for the injected water, 0 ppm, 60,000 ppm, and 200,000 ppm. Finally, based on the experimental results, a 2-D numerical simulation model was constructed and validated. The simulation model was then extended to conduct sensitivity studies on different parameters such as permeability variations in the core, WAG ratio and slug size, and SWAG ratio. The results of this study indicate that injecting water with CO2 either simultaneously or in alternating cycles increases the oil recovery by at least 10% and reduces the CO2 requirements by 50%. The salinity of the injected water has shown a detrimental effect on oil recovery only during WAG and SWAG injections. Lowering injected water salinity, which increases the CO2 solubility in water, increases oil recovery by up to 18%. Unfractured cores resulted in higher recovery than all fractured ones. CGI in fractured cores resulted in very poor recovery but WAG and SWAG injections improved the oil recovery by at least 25% over CGI. This is because of the better conformance provided by the injected water, which decreased CO2 cycling through the fracture. CO2 injection in layered permeability arrangements showed significant decrease in oil recovery (up to 40%) compared to the homogenous case. For all injection modes during the layered permeability arrangements, the best oil recovery was obtained when the flow barrier is in the middle of the core. When the permeability was arranged in sequence, each injection mode showed different preference to the permeability arrangements. The WAG ratio study in the homogenous case showed that a 1:2 ratio had the highest oil recovery, but the optimum ratio was 1:1 based on the amount of injected CO2. In contrast, layered permeability arrangements showed different WAG ratio preference depending on the location of the flow barrier.

Book Enhanced Oil Recovery and Carbon Dioxide Sequestration in Zama Keg River F Pool

Download or read book Enhanced Oil Recovery and Carbon Dioxide Sequestration in Zama Keg River F Pool written by Adal Al-Dliwe and published by . This book was released on 2005 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon dioxide (CO2) injection is an effective and promising technology for enhanced oil recovery and for reducing anthropogenic gas emissions. In this process, CO2 develops miscibility with the oil under reservoir conditions and leads to additional oil recovery. Proper reservoir characterization has a significant influence on implementing a successful CO2 flood in a reservoir. Computer simulation is an important tool for reservoir characterization and predicting optimal tradeoffs between maximum oil recovery and CO2 storage. This thesis presents the results of reservoir characterization analysis and simulation in Zama Keg River F Pool located in Northern Alberta, Canada, which was selected as a candidate for CO2 injection. This reef has a thick oil column spanned over a small area and two wells drilled on the same side of the reef. Open-hole logs and core analysis data were available for only one of the two wells. Data analyses disclosed a number of challenges that could adversely affect the results of any simulation for predicting the performance of CO2 displacement in this field. These challenges included, but were not limited to, the existence of two no-flow barriers with unknown extensions, lack of other data such as relative permeability, and lack of information on lateral distribution of the reservoir properties. Material balance analysis indicated the maximum oil in place was 4.7 MMSTB with a weak water support. A fully compositional reservoir simulation model was used to improve the understanding of the reservoir characteristics, investigate the potential amount of CO2 stored, and study the effect of CO2 injection on oil recovery using different injection strategies. Effects of different operational parameters on pore scale displacement efficiency and the overall displacement efficiency were studied. These parameters include production and injection rates, injection gas composition, well completion, mode of injection, and the timing of injection. Results of this thsesi show that by using a combination of two vertical injectors and one horizontal producer, maximum incremental oil would be recovered while a large volume of CO2 would be stored, a high net utilization factor was obtained, and maximum NPV was generated as compared to other injection-production schemes.

Book Chemical Enhanced Oil Recovery

Download or read book Chemical Enhanced Oil Recovery written by Patrizio Raffa and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-07-22 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).

Book Proceedings

Download or read book Proceedings written by and published by . This book was released on 1990 with total page 944 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Simulation and Optimization of Carbon Dioxide Utilization for Enhanced Oil Recovery from Depleted Reservoirs

Download or read book Numerical Simulation and Optimization of Carbon Dioxide Utilization for Enhanced Oil Recovery from Depleted Reservoirs written by Razi Safi and published by . This book was released on 2015 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to concerns about rising CO2 emissions from fossil fuel power plants, there has been a strong emphasis on the development of a safe and economical method for Carbon Capture Utilization and Storage (CCUS). One area of current interest in CO2 utilization is the Enhanced Oil Recovery (EOR) from depleted reservoirs. In an Enhanced Oil Recovery system, a depleted or depleting oil reservoir is re-energized by injecting high-pressure CO2 to increase the recovery factor of the oil from the reservoir. An additional benefit beyond oil recovery is that the reservoir could also serve as a long-term storage vessel for the injected CO2. Although this technology is old, its application to depleted reservoirs is relatively recent because of its dual benefit of oil recovery and CO2 storage thereby making some contributions to the mitigation of anthropogenic CO2 emissions. Since EOR from depleted reservoirs using CO2 injection has been considered by the industry only recently, there are uncertainties in deployment that are not well understood, e.g. the efficiency of the EOR system over time, the safety of the sequestered CO2 due to possible leakage from the reservoir. Furthermore, it is well known that the efficiency of the oil extraction is highly dependent on the CO2 injection rate and the injection pressure. Before large scale deployment of this technology can occur, it is important to understand the mechanisms that can maximize the oil extraction efficiency as well as the CO2 sequestration capacity by optimizing the CO2 injection parameters, namely, the injection rate and the injection pressure. In this thesis, numerical simulations of subsurface flow in an EOR system is conducted using the DOE funded multiphase flow solver COZView/COZSim developed by Nitec, LLC. A previously developed multi-objective optimization code based on a genetic algorithm developed in the CFD laboratory of the Mechanical Engineering department of Washington University in St. Louis is modified for the use the COZView/COZSim software for optimization applications to EOR. In this study, two reservoirs are modeled. The first is based on a benchmark reservoir described in the COZSim tutorial; the second is a reservoir in the Permian Basin in Texas for which extensive data is available. In addition to pure CO2 injection, a Water Alternating Gas (WAG) injection scheme is also investigated for the same two reservoirs. Optimizations for EOR Constant Gas Injection (CGI) and WAG injection schemes are conducted with a genetic algorithm (GA) based optimizer combined with the simulation software COZSim. Validation of the obtained multi-objective optimizer was achieved by comparing its results with the results obtained from the built-in optimization function within the COZView graphic user interface. Using our GA based optimizer, optimal constant-mass and pressure-limited injection profiles are determined for EOR. In addition, the use of recycled gas is also investigated. Optimization of the EOR problem results in an increased recovery factor with a more efficient utilization of injected CO2. The results of this study should help in paving the way for future optimization studies of other systems such as Enhanced Gas Recovery (EGR) and Enhanced Geothermal Systems (EGS) that are currently being investigated and considered for CCUS.

Book Underground Storage of CO2 and Energy

Download or read book Underground Storage of CO2 and Energy written by Michael Z. Hou and published by CRC Press. This book was released on 2010-07-07 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Of the known greenhouse gases, political attention to date has primarily focused on carbon dioxide (CO2), whereby it is assumed that underground storages of crude oil and natural gas through Carbon Capture and Storage (CCS) technology could contribute significantly to global climate protection. Underground Storage of CO2 and Energy covers many aspects of CO2 sequestration and its usage, as well as of underground storage of fossil and renewable energy sources, and is divided into 8 parts: • Environmental and Energy Policy & Law for Underground Storage • Geological Storage and Monitoring • Enhanced Gas and Oil Recovery Using CO2 (CO2 -EGR/EOR) • Rock Mechanical Behavior in Consideration of Dilatancy and Damage • Underground Storage of Natural Gas and Oil • Underground Storage of Wind Energy • State-of-the-Art & New Developments in Gas Supply in Germany and China • EOR & New Drilling Technology Underground Storage of CO2 and Energy will be invaluable to academics, professionals and engineers, and to industries and governmental bodies active in the field of underground storage of fossil and renewable energy sources.

Book Reservoir Simulation Studies for Coupled CO2 Sequestration and Enhanced Oil Recovery

Download or read book Reservoir Simulation Studies for Coupled CO2 Sequestration and Enhanced Oil Recovery written by Yousef Ghomian and published by . This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compositional reservoir simulation studies were performed to investigate the effect of uncertain reservoir parameters, flood design variables, and economic factors on coupled CO2 sequestration and EOR projects. Typical sandstone and carbonate reservoir properties were used to build generic reservoir models. A large number of simulations were needed to quantify the impact of all these factors and their corresponding uncertainties taking into account various combinations of the factors. The design of experiment method along with response surface methodology and Monte-Carlo simulations were utilized to maximize the information gained from each uncertainty analysis. The two objective functions were project profit in the form of $/bbl of oil produced and sequestered amount of CO2 in the reservoir. The optimized values for all objective functions predicted by design of experiment and the response surface method were found to be close to the values obtained by the simulation study, but with only a small fraction of the computational time. After the statistical analysis of the simulation results, the most to least influential factors for maximizing both profit and amount of stored CO2 are the produced gas oil ratio constraint, production and injection well types, and well spacing. For WAG injection scenarios, the Dykstra-Parsons coefficient and combinations of WAG ratio and slug size are important parameters. Also for a CO2 flood, no significant reduction of profit occurred when only the storage of CO2 was maximized. In terms of the economic parameters, it was demonstrated that the oil price dominates the CO2 EOR and storage. This study showed that sandstone reservoirs have higher probability of need for CO2i ncentives. In addition, higher CO2 credit is needed for WAG injection scenarios than continuous CO2 injection. As the second part of this study, scaling groups for miscible CO2 flooding in a three-dimensional oil reservoir were derived using inspectional analysis with special emphasis on the equations related to phase behavior. Some of these scaling groups were used to develop a new MMP correlation. This correlation was compared with published correlations using a wide range of reservoir fluids and found to give more accurate predictions of the MMP.

Book Reservoir Simulation of CO2 Sequestration and Enhanced Oil Recovery in Tensleep Formation  Teapot Dome Field

Download or read book Reservoir Simulation of CO2 Sequestration and Enhanced Oil Recovery in Tensleep Formation Teapot Dome Field written by Ricardo Gaviria Garcia and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Teapot Dome field is located 35 miles north of Casper, Wyoming in Natrona County. This field has been selected by the U.S. Department of Energy to implement a field-size CO2 storage project. With a projected storage of 2.6 million tons of carbon dioxide a year under fully operational conditions in 2006, the multiple-partner Teapot Dome project could be one of the world's largest CO2 storage sites. CO2 injection has been used for decades to improve oil recovery from depleted hydrocarbon reservoirs. In the CO2 sequestration technique, the aim is to "co-optimize" CO2 storage and oil recovery. In order to achieve the goal of CO2 sequestration, this study uses reservoir simulation to predict the amount of CO2 that can be stored in the Tensleep Formation and the amount of oil that can be produced as a side benefit of CO2 injection. This research discusses the effects of using different reservoir fluid models from EOS regression and fracture permeability in dual porosity models on enhanced oil recovery and CO2 storage in the Tensleep Formation. Oil and gas production behavior obtained from the fluid models were completely different. Fully compositional and pseudo-miscible black oil fluid models were tested in a quarter of a five spot pattern. Compositional fluid model is more convenient for enhanced oil recovery evaluation. Detailed reservoir characterization was performed to represent the complex characteristics of the reservoir. A 3D black oil reservoir simulation model was used to evaluate the effects of fractures in reservoir fluids production. Single porosity simulation model results were compared with those from the dual porosity model. Based on the results obtained from each simulation model, it has been concluded that the pseudo-miscible model can not be used to represent the CO2 injection process in Teapot Dome. Dual porosity models with variable fracture permeability provided a better reproduction of oil and water rates in the highly fractured Tensleep Formation.