EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Simulation of Intense Beams and Targets for Heavy Ion Fusion Science  HEDLP

Download or read book Simulation of Intense Beams and Targets for Heavy Ion Fusion Science HEDLP written by and published by . This book was released on 2010 with total page 9 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book SIMULATION OF INTENSE BEAMS FOR HEAVY ION FUSION

Download or read book SIMULATION OF INTENSE BEAMS FOR HEAVY ION FUSION written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract not provided.

Book New Capabilities for Modeling Intense Beams in Heavy Ion Fusion Drivers

Download or read book New Capabilities for Modeling Intense Beams in Heavy Ion Fusion Drivers written by and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Significant advances have been made in modeling the intense beams of heavy-ion beam-driven Inertial Fusion Energy (Heavy Ion Fusion). In this paper, a roadmap for a validated, predictive driver simulation capability, building on improved codes and experimental diagnostics, is presented, as are examples of progress. The Mesh Refinement and Particle-in-Cell methods were integrated in the WARP code; this capability supported an injector experiment that determined the achievable current rise time, in good agreement with calculations. In a complementary effort, a new injector approach based on the merging of (almost equal to)100 small beamlets was simulated, its basic feasibility established, and an experimental test designed. Time-dependent 3D simulations of the High Current Experiment (HCX) were performed, yielding voltage waveforms for an upcoming study of bunch-end control. Studies of collective beam modes which must be taken into account in driver designs were carried out. The value of using experimental data to tomographically ''synthesize'' a 4D beam particle distribution and so initialize a simulation was established; this work motivated further development of new diagnostics which yield 3D projections of the beam phase space. Other developments, including improved modeling of ion beam focusing and transport through the fusion chamber environment and onto the target, and of stray electrons and their effects on ion beams, are briefly noted.

Book SIMULATION OF INTENSE BEAMS FOR HEAVY ION FUSION

Download or read book SIMULATION OF INTENSE BEAMS FOR HEAVY ION FUSION written by A. Friedman and published by . This book was released on 2004 with total page 9 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer simulations of intense ion beams play a key role in the Heavy Ion Fusion research program. Along with analytic theory, they are used to develop future experiments, guide ongoing experiments, and aid in the analysis and interpretation of experimental results. They also afford access to regimes not yet accessible in the experimental program. The U.S. Heavy Ion Fusion Virtual National Laboratory and its collaborators have developed state-of-the art computational tools, related both to codes used for stationary plasmas and to codes used for traditional accelerator applications, but necessarily differing from each in important respects. These tools model beams in varying levels of detail and at widely varying computational cost. They include moment models (envelope equations and fluid descriptions), particle-in-cell methods (electrostatic and electromagnetic), nonlinear-perturbative descriptions (''{delta}f''), and continuum Vlasov methods. Increasingly, it is becoming clear that it is necessary to simulate not just the beams themselves, but also the environment in which they exist, be it an intentionally-created plasma or an unwanted cloud of electrons and gas. In this paper, examples of the application of simulation tools to intense ion beam physics are presented, including support of present-day experiments, fundamental beam physics studies, and the development of future experiments. Throughout, new computational models are described and their utility explained. These include Mesh Refinement (and its dynamic variant, Adaptive Mesh Refinement); improved electron cloud and gas models, and an electron advance scheme that allows use of larger time steps; and moving-mesh and adaptive-mesh Vlasov methods.

Book Simulating Intense Ion Beams for Inertial Fusion Energy

Download or read book Simulating Intense Ion Beams for Inertial Fusion Energy written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Heavy Ion Fusion (HIF) program's goal is the development of the body of knowledge needed for Inertial Fusion Energy (IFE) to realize its promise. The intense ion beams that will drive HIF targets are nonneutral plasmas and exhibit collective, nonlinear dynamics which must be understood using the kinetic models of plasma physics. This beam physics is both rich and subtle: a wide range in spatial and temporal scales is involved, and effects associated with both instabilities and non-ideal processes must be understood. Ion beams have a ''long memory'', and initialization of a beam at mid-system with an idealized particle distribution introduces uncertainties; thus, it will be crucial to develop, and to extensively use, an integrated and detailed ''source-to-target'' HIF beam simulation capability. We begin with an overview of major issues.

Book New Capabilities for Modeling Intense Beams in Heavy Ion Fusiondrivers

Download or read book New Capabilities for Modeling Intense Beams in Heavy Ion Fusiondrivers written by R. C. Davidson and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book U S  Heavy Ion Beam Science Towards Inertial Fusion Energy

Download or read book U S Heavy Ion Beam Science Towards Inertial Fusion Energy written by and published by . This book was released on 2002 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: Significant experimental and theoretical progress in the U.S heavy-ion fusion (HIF) program is reported in modeling and measurements of intense space-charge-dominated heavy ion and electron beams. Measurements of the transport of a well-matched and aligned high current (0.2A) 1.0 MeV potassium ion beam through 10 electric quadrupoles, with a fill factor of 60%, shows no emittance growth within experimental measurement uncertainty, as expected from the simulations. Another experiment shows that passing a beam through an aperture can reduce emittance to near the theoretical limits, and that plasma neutralization of the beam's space-charge can greatly reduce the focal spot radius. Measurements of intense beamlet current density, emittance, charge-state purity, and energy spread from a new, high-brightness, Argon plasma source for HIF experiments are described. New theory and simulations of neutralization of intense beam space charge with plasma in various focusing chamber configurations indicate that near-emittance-limited beam focal spot sizes can be obtained even with beam perveance an order of magnitude higher than in earlier HIF focusing experiments.

Book Recent U S  Advances in Ion beam driven High Energy Densityphysics and Heavy Ion Fusion

Download or read book Recent U S Advances in Ion beam driven High Energy Densityphysics and Heavy Ion Fusion written by J. Coleman and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport; and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by> 50 X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. They are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy.

Book Final Progress Report   Heavy Ion Accelerator Theory and Simulation

Download or read book Final Progress Report Heavy Ion Accelerator Theory and Simulation written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of a beam of heavy ions to heat a target for the study of warm dense matter physics, high energy density physics, and ultimately to ignite an inertial fusion pellet, requires the achievement of beam intensities somewhat greater than have traditionally been obtained using conventional accelerator technology. The research program described here has substantially contributed to understanding the basic nonlinear intense-beam physics that is central to the attainment of the requisite intensities. Since it is very difficult to reverse intensity dilution, avoiding excessive dilution over the entire beam lifetime is necessary for achieving the required beam intensities on target. The central emphasis in this research has therefore been on understanding the nonlinear mechanisms that are responsible for intensity dilution and which generally occur when intense space-charge-dominated beams are not in detailed equilibrium with the external forces used to confine them. This is an important area of study because such lack of detailed equilibrium can be an unavoidable consequence of the beam manipulations such as acceleration, bunching, and focusing necessary to attain sufficient intensity on target. The primary tool employed in this effort has been the use of simulation, particularly the WARP code, in concert with experiment, to identify the nonlinear dynamical characteristics that are important in practical high intensity accelerators. This research has gradually made a transition from the study of idealized systems and comparisons with theory, to study the fundamental scaling of intensity dilution in intense beams, and more recently to explicit identification of the mechanisms relevant to actual experiments. This work consists of two categories; work in direct support beam physics directly applicable to NDCX and a larger effort to further the general understanding of space-charge-dominated beam physics.

Book Shaun Clark

    Book Details:
  • Author :
  • Publisher :
  • Release : 2001
  • ISBN :
  • Pages : pages

Download or read book Shaun Clark written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Energy Density Physics Experiments with Intense Heavy Ion Beams

Download or read book High Energy Density Physics Experiments with Intense Heavy Ion Beams written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

Book Overview of Theory and Modeling in the Heavy Ion Fusion Virtual National Laboratory

Download or read book Overview of Theory and Modeling in the Heavy Ion Fusion Virtual National Laboratory written by and published by . This book was released on 2002 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper presents analytical and simulation studies of intense heavy ion beam propagation, including the injection, acceleration, transport and compression phases, and beam transport and focusing in background plasma in the target chamber. Analytical theory and simulations that support the High Current Experiment (HCX), the Neutralized Transport Experiment (NTX), and the advanced injector development program, are being used to provide a basic understanding of the nonlinear beam dynamics and collective processes, and to develop design concepts for the next-step Integrated Beam Experiment (IBX), an Integrated Research Experiment (IRE), and a heavy ion fusion driver. 3-D nonlinear perturbative simulations have been applied to collective instabilities driven by beam temperature anisotropy, and to two-stream interactions between the beam ions and any unwanted background electrons; 3-D particle-in-cell simulations of the 2 MV Electrostatic Quadrupole (ESQ) injector have clarified the influence of pulse rise time; analytical studies and simulations of the drift compression process have been carried out; syntheses of a 4-D particle distribution function from phase-space projections have been developed; and studies of the generation and trapping of stray electrons in the beam self fields have been performed. Particle-in-cell simulations, involving pre-formed plasma, are being used to study the influence of charge and current neutralization on the focusing of the ion beam in NTX and in a fusion chamber.

Book Issues and Opportunities

Download or read book Issues and Opportunities written by and published by . This book was released on 1999 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: UCRL- JC- 134975 PREPRINT code offering 3- D, axisymmetric, and ''transverse slice'' (steady flow) geometries, with a hierarchy of models for the ''lattice'' of focusing, bending, and accelerating elements. Interactive and script- driven code steering is afforded through an interpreter interface. The code runs with good parallel scaling on the T3E. Detailed simulations of machine segments and of complete small experiments, as well as simplified full- system runs, have been carried out, partially benchmarking the code. A magnetoinductive model, with module impedance and multi- beam effects, is under study. experiments, including an injector scalable to multi- beam arrays, a high- current beam transport and acceleration experiment, and a scaled final- focusing experiment. These ''phase I'' projects are laying the groundwork for the next major step in HIF development, the Integrated Research Experiment (IRE). Simulations aimed directly at the IRE must enable us to: design a facility with maximum power on target at minimal cost; set requirements for hardware tolerances, beam steering, etc.; and evaluate proposed chamber propagation modes. Finally, simulations must enable us to study all issues which arise in the context of a fusion driver, and must facilitate the assessment of driver options. In all of this, maximum advantage must be taken of emerging terascale computer architectures, requiring an aggressive code development effort. An organizing principle should be pursuit of the goal of integrated and detailed source- to- target simulation. methods for analysis of the beam dynamics in the various machine concepts, using moment- based methods for purposes of design, waveform synthesis, steering algorithm synthesis, etc. Three classes of discrete- particle models should be coupled: (1) electrostatic/ magnetoinductive PIC simulations should track the beams from the source through the final- focusing optics, passing details of the time- dependent distribution function to (2) electromagnetic or magnetoinductive PIC or hybrid PIG/ fluid simulations in the fusion chamber (which would finally pass their particle trajectory information to the radiation- hydrodynamics codes used for target design); in parallel, (3) detailed PIC, delta- f, core/ test- particle, and perhaps continuum Vlasov codes should be used to study individual sections of the driver and chamber very carefully; consistency may be assured by linking data from the PIC sequence, and knowledge gained may feed back into that sequence.

Book Bibelske og Kirkehistoriske Psalmer og Sange for Skolen

Download or read book Bibelske og Kirkehistoriske Psalmer og Sange for Skolen written by P. O. Boisen and published by . This book was released on 1865 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Realistic Modeling of Chamber Transport for Heavy ion Fusion

Download or read book Realistic Modeling of Chamber Transport for Heavy ion Fusion written by and published by . This book was released on 2003 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transport of intense heavy-ion beams to an inertial-fusion target after final focus is simulated here using a realistic computer model. It is found that passing the beam through a rarefied plasma layer before it enters the fusion chamber can largely neutralize the beam space charge and lead to a usable focal spot for a range of ion species and input conditions.

Book Simulation of Chamber Transport for Heavy ion Fusion

Download or read book Simulation of Chamber Transport for Heavy ion Fusion written by and published by . This book was released on 2002 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beams for heavy-ion fusion (HIF) are expected to require substantial neutralization in a target chamber. Present targets call for higher beam currents and smaller focal spots than most earlier designs, leading to high space-charge fields. Collisional stripping by the background gas expected in the chamber further increases the beam charge. Simulations with no electron sources other than beam stripping and background-gas ionization show an acceptable focal spot only for high ion energies or for currents far below the values assumed in recent HIF power-plant scenarios. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by radiation from the target, and pre-neutralization by a plasma generated along the beam path. The simulations summarized here indicate that these effects can significantly reduce the beam focal-spot size.

Book An Assessment of the Prospects for Inertial Fusion Energy

Download or read book An Assessment of the Prospects for Inertial Fusion Energy written by National Research Council and published by National Academies Press. This book was released on 2013-07-05 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: The potential for using fusion energy to produce commercial electric power was first explored in the 1950s. Harnessing fusion energy offers the prospect of a nearly carbon-free energy source with a virtually unlimited supply of fuel. Unlike nuclear fission plants, appropriately designed fusion power plants would not produce the large amounts of high-level nuclear waste that requires long-term disposal. Due to these prospects, many nations have initiated research and development (R&D) programs aimed at developing fusion as an energy source. Two R&D approaches are being explored: magnetic fusion energy (MFE) and inertial fusion energy (IFE). An Assessment of the Prospects for Inertial Fusion Energy describes and assesses the current status of IFE research in the United States; compares the various technical approaches to IFE; and identifies the scientific and engineering challenges associated with developing inertial confinement fusion (ICF) in particular as an energy source. It also provides guidance on an R&D roadmap at the conceptual level for a national program focusing on the design and construction of an inertial fusion energy demonstration plant.