Download or read book Granular Dynamics Contact Mechanics and Particle System Simulations written by Colin Thornton and published by Springer. This book was released on 2015-09-03 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the Discrete Element Method (DEM) technique, a discontinuum modelling approach that takes into account the fact that granular materials are composed of discrete particles which interact with each other at the microscale level. This numerical simulation technique can be used both for dispersed systems in which the particle-particle interactions are collisional and compact systems of particles with multiple enduring contacts. The book provides an extensive and detailed explanation of the theoretical background of DEM. Contact mechanics theories for elastic, elastic-plastic, adhesive elastic and adhesive elastic-plastic particle-particle interactions are presented. Other contact force models are also discussed, including corrections to some of these models as described in the literature, and important areas of further research are identified. A key issue in DEM simulations is whether or not a code can reliably simulate the simplest of systems, namely the single particle oblique impact with a wall. This is discussed using the output obtained from the contact force models described earlier, which are compared for elastic and inelastic collisions. In addition, further insight is provided for the impact of adhesive particles. The author then moves on to provide the results of selected DEM applications to agglomerate impacts, fluidised beds and quasi-static deformation, demonstrating that the DEM technique can be used (i) to mimic experiments, (ii) explore parameter sweeps, including limiting values, or (iii) identify new, previously unknown, phenomena at the microscale. In the DEM applications the emphasis is on discovering new information that enhances our rational understanding of particle systems, which may be more significant than developing a new continuum model that encompasses all microstructural aspects, which would most likely prove too complicated for practical implementation. The book will be of interest to academic and industrial researchers working in particle technology/process engineering and geomechanics, both experimentalists and theoreticians.
Download or read book Multiphysics Modelling of Fluid Particulate Systems written by Hassan Khawaja and published by Academic Press. This book was released on 2020-03-14 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphysics Modelling of Fluid-Particulate Systems provides an explanation of how to model fluid-particulate systems using Eulerian and Lagrangian methods. The computational cost and relative merits of the different methods are compared, with recommendations on where and how to apply them provided. The science underlying the fluid-particulate phenomena involves computational fluid dynamics (for liquids and gases), computational particle dynamics (solids), and mass and heat transfer. In order to simulate these systems, it is essential to model the interactions between phases and the fluids and particles themselves. This book details instructions for several numerical methods of dealing with this complex problem. This book is essential reading for researchers from all backgrounds interested in multiphase flows or fluid-solid modeling, as well as engineers working on related problems in chemical engineering, food science, process engineering, geophysics or metallurgical processing. - Provides detailed coverage of Resolved and Unresolved Computational Fluid Dynamics - Discrete Element Method (CFD-DEM), Smoothed Particle Hydrodynamics, and their various attributes - Gives an excellent summary of a range of simulation techniques and provides numerical examples - Starts with a broad introduction to fluid-particulate systems to help readers from a range of disciplines grasp fundamental principles
Download or read book Computer Simulation Using Particles written by R.W Hockney and published by CRC Press. This book was released on 2021-03-24 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer simulation of systems has become an important tool in scientific research and engineering design, including the simulation of systems through the motion of their constituent particles. Important examples of this are the motion of stars in galaxies, ions in hot gas plasmas, electrons in semiconductor devices, and atoms in solids and liquids. The behavior of the system is studied by programming into the computer a model of the system and then performing experiments with this model. New scientific insight is obtained by observing such computer experiments, often for controlled conditions that are not accessible in the laboratory. Computer Simulation using Particles deals with the simulation of systems by following the motion of their constituent particles. This book provides an introduction to simulation using particles based on the NGP, CIC, and P3M algorithms and the programming principles that assist with the preparations of large simulation programs based on the OLYMPUS methodology. It also includes case study examples in the fields of astrophysics, plasmas, semiconductors, and ionic solids as well as more detailed mathematical treatment of the models, such as their errors, dispersion, and optimization. This resource will help you understand how engineering design can be assisted by the ability to predict performance using the computer model before embarking on costly and time-consuming manufacture.
Download or read book Simulation and Modeling of Particulate System written by Aibing Yu and published by Springer. This book was released on 2025-06-15 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this handbook is to provide a comprehensive summary of the field of Particle Science and Technology which includes most updated research findings and their applications in different industries. It is hoped that the consolidated knowledge described by this handbook will inspire more innovative ideas to bring the field forward. The size of the particles may range from nanometer scale, as in pigments or aerosols, to that of mined or quarried materials. The handbook will cover the topics ranging from the formation and synthesis, packing and flow and application of these particles. Each part is explored in great details in different sections and chapters, it is written by a pool of international well known scholars, as well as industrial experts. The handbook fully reflects the state of the art in Particle Science and Technology.
Download or read book An Introduction to Modeling and Simulation of Particulate Flows written by T. I. Zohdi and published by SIAM. This book was released on 2007-01-01 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The relatively recent increase in computational power available for mathematical modeling and simulation raises the possibility that modern numerical methods can play a significant role in the analysis of complex particulate flows. An Introduction to Modeling and Simulation of Particulate Flows focuses on basic models and physically based computational solution strategies for the direct and rapid simulation of flowing particulate media. Its emphasis is primarily on fluidized dry particulate flows in which there is no significant interstitial fluid, although fully coupled fluid-particle systems are discussed as well. An introduction to basic computational methods for ascertaining optical responses of particulate systems also is included. The successful analysis of a wide range of applications requires the simulation of flowing particulate media that simultaneously involves near-field interaction and contact between particles in a thermally sensitive environment. These systems naturally occur in astrophysics and geophysics; powder processing pharmaceutical industries; bio-, micro- and nanotechnologies; and applications arising from the study of spray processes involving aerosols, sputtering, and epitaxy. Audience: written for computational scientists, numerical analysts, and applied mathematicians, it will be of interest to civil and mechanical engineers and materials scientists. It is also suitable for first-year graduate students in the applied sciences, engineering, and applied mathematics who have an interest in the computational analysis of complex particulate flows.
Download or read book Guide to Dynamic Simulations of Rigid Bodies and Particle Systems written by Murilo G. Coutinho and published by Springer Science & Business Media. This book was released on 2012-10-08 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the techniques needed to produce realistic simulations and animations of particle and rigid-body systems. The text focuses on both the theoretical and practical aspects of developing and implementing physically based dynamic-simulation engines. Each chapter examines numerous algorithms, describing their design and analysis in an accessible manner, without sacrificing depth of coverage or mathematical rigor. Features: examines the problem of computing an hierarchical representation of the geometric description of each simulated object, as well as the simulated world; discusses the use of discrete and continuous collision detection to handle thin or fast-moving objects; describes the computational techniques needed for determining all impulsive and contact forces between bodies with multiple simultaneous collisions and contacts; presents techniques that can be used to dynamically simulate articulated rigid bodies; concludes each chapter with exercises.
Download or read book Particulate Flows written by Donald A. Drew and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications PARTICULATE FLOWS: PROCESSING AND RHEOLOGY is based on the proceedings of a very successful one-week workshop with the same title, which was an integral part of the 1995-1996 IMA program on "Mathematical Methods in Materials Science." We would like to thank Donald A. Drew, Daniel D. Joseph, and Stephen L. Passman for their excellent work as organizers of the meeting. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO) and the Office of Naval Research (ONR), whose financial support made the workshop possible. A vner Friedman Robert Gulliver v PREFACE The workshop on Particulate Flows: Processing and Rheology was held January 8-12, 1996 at the Institute for Mathematics and its Applications on the University of Minnesota Twin Cities campus as part of the 1995- 96 Program on Mathematical Methods in Materials Science. There were about forty participants, and some lively discussions, in spite of the fact that bad weather on the east coast kept some participants from attending, and caused scheduling changes throughout the workshop. Heterogeneous materials can behave strangely, even in simple flow sit uations. For example, a mixture of solid particles in a liquid can exhibit behavior that seems solid-like or fluid-like, and attempting to measure the "viscosity" of such a mixture leads to contradictions and "unrepeatable" experiments. Even so, such materials are commonly used in manufacturing and processing.
Download or read book Guide to Dynamic Simulations of Rigid Bodies and Particle Systems written by Murilo G. Coutinho and published by Springer Science & Business Media. This book was released on 2012-10-09 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the techniques needed to produce realistic simulations and animations of particle and rigid-body systems. The text focuses on both the theoretical and practical aspects of developing and implementing physically based dynamic-simulation engines. Each chapter examines numerous algorithms, describing their design and analysis in an accessible manner, without sacrificing depth of coverage or mathematical rigor. Features: examines the problem of computing an hierarchical representation of the geometric description of each simulated object, as well as the simulated world; discusses the use of discrete and continuous collision detection to handle thin or fast-moving objects; describes the computational techniques needed for determining all impulsive and contact forces between bodies with multiple simultaneous collisions and contacts; presents techniques that can be used to dynamically simulate articulated rigid bodies; concludes each chapter with exercises.
Download or read book Modeling and Simulation of Mineral Processing Systems written by R. Peter King and published by Elsevier. This book was released on 2012-12-02 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dr. R. Peter King covers the field of quantitative modeling of mineral processing equipment and the use of these models to simulate the actual behavior of ore dressing and coal washing as they are configured to work in industrial practice. The material is presented in a pedagogical style that is particularly suitable for readers who wish to learn the wide variety of modeling methods that have evolved in this field. The models vary widely from one unit type to another. As a result each model is described in some detail. Wherever possible model structure is related to the underlying physical processes that govern the behaviour of particulate material in the processing equipment. Predictive models are emphasised throughout so that, when combined, they can be used to simulate the operation of complex mineral processing flowsheets. The development of successful simulation techniques is a major objective of the work that is covered in the text. - Covers all aspects of modeling and simulation - Provides all necessary tools to put the theory into practice
Download or read book Mathematical Modeling of Collective Behavior in Socio Economic and Life Sciences written by Giovanni Naldi and published by Springer Science & Business Media. This book was released on 2010-08-12 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using examples from finance and modern warfare to the flocking of birds and the swarming of bacteria, the collected research in this volume demonstrates the common methodological approaches and tools for modeling and simulating collective behavior. The topics presented point toward new and challenging frontiers of applied mathematics, making the volume a useful reference text for applied mathematicians, physicists, biologists, and economists involved in the modeling of socio-economic systems.
Download or read book Particulate Discrete Element Modelling written by Catherine O'Sullivan and published by CRC Press. This book was released on 2011-04-06 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first single work on DEM providing the information to get started with this powerful numerical modelling approach. Provides the basic details of the numerical method and the approaches used to interpret the results of DEM simulations. It will be of use to professionals, researchers and higher level students, with a theoretical overview of DEM as well as practical guidance.Selected Contents: 1.Introduction 2.Use of DEM in Geomechanics 3.Calculation of Contact Forces 4.Particle Motion 5.Particle Types 6.Boundary Conditions 7.Initial Geometry and Specimen Generation 8.Time Integration and Discrete Element Modelling 9.DEM Interpretation: A Continuum Perspective 10.Postprocessing: Graphical Interpretation of DEM Simulations 11.Basic Statisti
Download or read book Computational Models for Polydisperse Particulate and Multiphase Systems written by Daniele L. Marchisio and published by Cambridge University Press. This book was released on 2013-03-28 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a clear description of the theory of polydisperse multiphase flows, with emphasis on the mesoscale modelling approach and its relationship with microscale and macroscale models, this all-inclusive introduction is ideal whether you are working in industry or academia. Theory is linked to practice through discussions of key real-world cases (particle/droplet/bubble coalescence, break-up, nucleation, advection and diffusion and physical- and phase-space), providing valuable experience in simulating systems that can be applied to your own applications. Practical cases of QMOM, DQMOM, CQMOM, EQMOM and ECQMOM are also discussed and compared, as are realizable finite-volume methods. This provides the tools you need to use quadrature-based moment methods, choose from the many available options, and design high-order numerical methods that guarantee realizable moment sets. In addition to the numerous practical examples, MATLAB® scripts for several algorithms are also provided, so you can apply the methods described to practical problems straight away.
Download or read book Computer Simulation of Particulate Systems written by Lindsay D. Norman and published by . This book was released on 1971 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Particle Deposition and Aggregation written by M. Elimelech and published by Elsevier. This book was released on 1998-08-07 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deposition and aggregation of small solid particles are encountered in many natural and industrial environments. Whether it be deposition of particles onto a surface immersed in a liquid suspension or aggregateion of individual particles, these processes are of enotmous significance. They are vital to the manufacture of magnetic tape, purification of water using packed bed filters, selective capture of solids, cells and macromolecular species, and many other applications. This book presents a unified approach to the measurement, modelling and simulation of these processes, bringing together the disciplines of colliod and surface chemistry, hydrodynamics, and experimental and computational methods. It will be required reading for graduates working in process and environmental engineering, postgraduates involved in industrial R & D and for all scientists wishing to gain a more detailed and realistic understanding of process conditions in these areas.
Download or read book Understanding the Discrete Element Method written by Hans-Georg Matuttis and published by John Wiley & Sons. This book was released on 2014-06-23 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gives readers a more thorough understanding of DEM and equips researchers for independent work and an ability to judge methods related to simulation of polygonal particles Introduces DEM from the fundamental concepts (theoretical mechanics and solidstate physics), with 2D and 3D simulation methods for polygonal particles Provides the fundamentals of coding discrete element method (DEM) requiring little advance knowledge of granular matter or numerical simulation Highlights the numerical tricks and pitfalls that are usually only realized after years of experience, with relevant simple experiments as applications Presents a logical approach starting withthe mechanical and physical bases,followed by a description of the techniques and finally their applications Written by a key author presenting ideas on how to model the dynamics of angular particles using polygons and polyhedral Accompanying website includes MATLAB-Programs providing the simulation code for two-dimensional polygons Recommended for researchers and graduate students who deal with particle models in areas such as fluid dynamics, multi-body engineering, finite-element methods, the geosciences, and multi-scale physics.
Download or read book Particle Physics Reference Library written by Christian W. Fabjan and published by Springer Nature. This book was released on 2020 with total page 1083 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
Download or read book Modeling Design and Simulation of Systems written by Mohamed Sultan Mohamed Ali and published by Springer. This book was released on 2017-08-24 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set CCIS 751 and CCIS 752 constitutes the proceedings of the 17th Asia Simulation Conference, AsiaSim 2017, held in Malacca, Malaysia, in August/September 2017. The 124 revised full papers presented in this two-volume set were carefully reviewed and selected from 267 submissions. The papers contained in these proceedings address challenging issues in modeling and simulation in various fields such as embedded systems; symbiotic simulation; agent-based simulation; parallel and distributed simulation; high performance computing; biomedical engineering; big data; energy, society and economics; medical processes; simulation language and software; visualization; virtual reality; modeling and Simulation for IoT; machine learning; as well as the fundamentals and applications of computing.