Download or read book Categories and Sheaves written by Masaki Kashiwara and published by Springer Science & Business Media. This book was released on 2005-12-19 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Categories and sheaves appear almost frequently in contemporary advanced mathematics. This book covers categories, homological algebra and sheaves in a systematic manner starting from scratch and continuing with full proofs to the most recent results in the literature, and sometimes beyond. The authors present the general theory of categories and functors, emphasizing inductive and projective limits, tensor categories, representable functors, ind-objects and localization.
Download or read book Sheaves in Topology written by Alexandru Dimca and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Constructible and perverse sheaves are the algebraic counterpart of the decomposition of a singular space into smooth manifolds. This introduction to the subject can be regarded as a textbook on modern algebraic topology, treating the cohomology of spaces with sheaf (as opposed to constant) coefficients. The author helps readers progress quickly from the basic theory to current research questions, thoroughly supported along the way by examples and exercises.
Download or read book Sheaves on Manifolds written by Masaki Kashiwara and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sheaf Theory is modern, active field of mathematics at the intersection of algebraic topology, algebraic geometry and partial differential equations. This volume offers a comprehensive and self-contained treatment of Sheaf Theory from the basis up, with emphasis on the microlocal point of view. From the reviews: "Clearly and precisely written, and contains many interesting ideas: it describes a whole, largely new branch of mathematics." –Bulletin of the L.M.S.
Download or read book Manifolds Sheaves and Cohomology written by Torsten Wedhorn and published by Springer. This book was released on 2016-07-25 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.
Download or read book Topology of Singular Spaces and Constructible Sheaves written by Jörg Schürmann and published by Birkhäuser. This book was released on 2012-12-06 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is based on the lecture notes of six courses delivered at a Cimpa Summer School in Temuco, Chile, in January 2001. Leading experts contribute with introductory articles covering a broad area in probability and its applications, such as mathematical physics and mathematics of finance. Written at graduate level, the lectures touch the latest advances on each subject, ranging from classical probability theory to modern developments. Thus the book will appeal to students, teachers and researchers working in probability theory or related fields.
Download or read book Cohomology of Sheaves written by Birger Iversen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text exposes the basic features of cohomology of sheaves and its applications. The general theory of sheaves is very limited and no essential result is obtainable without turn ing to particular classes of topological spaces. The most satis factory general class is that of locally compact spaces and it is the study of such spaces which occupies the central part of this text. The fundamental concepts in the study of locally compact spaces is cohomology with compact support and a particular class of sheaves,the so-called soft sheaves. This class plays a double role as the basic vehicle for the internal theory and is the key to applications in analysis. The basic example of a soft sheaf is the sheaf of smooth functions on ~n or more generally on any smooth manifold. A rather large effort has been made to demon strate the relevance of sheaf theory in even the most elementary analysis. This process has been reversed in order to base the fundamental calculations in sheaf theory on elementary analysis.
Download or read book Geometry of Principal Sheaves written by Efstathios Vassiliou and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a detailed introduction to the theory of connections on principal sheaves in the framework of Abstract Differential Geometry (ADG). This is a new approach to differential geometry based on sheaf theoretic methods, without use of ordinary calculus. This point of view complies with the demand of contemporary physics to cope with non-smooth models of physical phenomena and spaces with singularities. Starting with a brief survey of the required sheaf theory and cohomology, the exposition then moves on to differential triads (the abstraction of smooth manifolds) and Lie sheaves of groups (the abstraction of Lie groups). Having laid the groundwork, the main part of the book is devoted to the theory of connections on principal sheaves, incorporating connections on vector and associated sheaves. Topics such as the moduli sheaf of connections, classification of principal sheaves, curvature, flat connections and flat sheaves, Chern-Weil theory, are also treated. The study brings to light fundamental notions and tools of the standard differential geometry which are susceptible of the present abstraction, and whose role remains unexploited in the classical context, because of the abundance of means therein. However, most of the latter are nonsensical in ADG.
Download or read book Applications of Sheaves written by M. P. Fourman and published by Springer. This book was released on 2006-11-15 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Equivariant Sheaves and Functors written by Joseph Bernstein and published by Springer. This book was released on 2006-11-15 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: The equivariant derived category of sheaves is introduced. All usual functors on sheaves are extended to the equivariant situation. Some applications to the equivariant intersection cohomology are given. The theory may be useful to specialists in representation theory, algebraic geometry or topology.
Download or read book Sheaf Theory through Examples written by Daniel Rosiak and published by MIT Press. This book was released on 2022-10-25 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: An approachable introduction to elementary sheaf theory and its applications beyond pure math. Sheaves are mathematical constructions concerned with passages from local properties to global ones. They have played a fundamental role in the development of many areas of modern mathematics, yet the broad conceptual power of sheaf theory and its wide applicability to areas beyond pure math have only recently begun to be appreciated. Taking an applied category theory perspective, Sheaf Theory through Examples provides an approachable introduction to elementary sheaf theory and examines applications including n-colorings of graphs, satellite data, chess problems, Bayesian networks, self-similar groups, musical performance, complexes, and much more. With an emphasis on developing the theory via a wealth of well-motivated and vividly illustrated examples, Sheaf Theory through Examples supplements the formal development of concepts with philosophical reflections on topology, category theory, and sheaf theory, alongside a selection of advanced topics and examples that illustrate ideas like cellular sheaf cohomology, toposes, and geometric morphisms. Sheaf Theory through Examples seeks to bridge the powerful results of sheaf theory as used by mathematicians and real-world applications, while also supplementing the technical matters with a unique philosophical perspective attuned to the broader development of ideas.
Download or read book Intersection Homology Perverse Sheaves written by Laurenţiu G. Maxim and published by Springer Nature. This book was released on 2019-11-30 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a gentle introduction to intersection homology and perverse sheaves, where concrete examples and geometric applications motivate concepts throughout. By giving a taste of the main ideas in the field, the author welcomes new readers to this exciting area at the crossroads of topology, algebraic geometry, analysis, and differential equations. Those looking to delve further into the abstract theory will find ample references to facilitate navigation of both classic and recent literature. Beginning with an introduction to intersection homology from a geometric and topological viewpoint, the text goes on to develop the sheaf-theoretical perspective. Then algebraic geometry comes to the fore: a brief discussion of constructibility opens onto an in-depth exploration of perverse sheaves. Highlights from the following chapters include a detailed account of the proof of the Beilinson–Bernstein–Deligne–Gabber (BBDG) decomposition theorem, applications of perverse sheaves to hypersurface singularities, and a discussion of Hodge-theoretic aspects of intersection homology via Saito’s deep theory of mixed Hodge modules. An epilogue offers a succinct summary of the literature surrounding some recent applications. Intersection Homology & Perverse Sheaves is suitable for graduate students with a basic background in topology and algebraic geometry. By building context and familiarity with examples, the text offers an ideal starting point for those entering the field. This classroom-tested approach opens the door to further study and to current research.
Download or read book Sheaves of Algebras over Boolean Spaces written by Arthur Knoebel and published by Springer Science & Business Media. This book was released on 2011-12-16 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique monograph building bridges among a number of different areas of mathematics such as algebra, topology, and category theory. The author uses various tools to develop new applications of classical concepts. Detailed proofs are given for all major theorems, about half of which are completely new. Sheaves of Algebras over Boolean Spaces will take readers on a journey through sheaf theory, an important part of universal algebra. This excellent reference text is suitable for graduate students, researchers, and those who wish to learn about sheaves of algebras.
Download or read book An Introduction to Partially Ordered Structures and Sheaves written by Francisco Miraglia and published by Polimetrica s.a.s.. This book was released on 2006 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Invariant Differential Operators and the Cohomology of Lie Algebra Sheaves written by Franz W. Kamber and published by American Mathematical Soc.. This book was released on 1971 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a Lie algebra sheaf L of derivations of a sheaf of rings O on a space X global cohomology groups and local cohomology sheaves are introduced and analyzed. Global and local splitting obstructions for extensions of modules over a Lie algebra sheaf are studied. In the applications considered, L is a Lie algebra sheaf of vector fields on a manifold M, O the structure sheaf of M. For vector bundles E, F on M on which L acts, the existence of invariant differential operators D: E→F whose symbols are preassigned equivariant maps is discussed in terms of these splitting obstructions. Lie algebra sheaves defined by Lie group actions are considered. This theory is applied in particular to the case of a transitive L. The splitting obstructions for extensions of modules over a transitive Lie algebra sheaf are analyzed in detail. The results are then applied to the problem of the existence of invariant connections on locally homogeneous spaces. The obstruction is computed in some examples.
Download or read book Bringing in the Sheaves Transforming Poverty Into Productivity written by and published by . This book was released on 1996 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Institute for Christian Economics (ICE) in Tyler, Texas, presents the full-text of "Bringing in the Sheaves: Transforming Poverty Into Productivity," as part of the ICE FreeBooks resource. The book, written by George Grant, was originally published in 1985, and is available online in HTML or PDF format. The book discusses the role of the church in reducing poverty.
Download or read book Perverse Sheaves and Applications to Representation Theory written by Pramod N. Achar and published by American Mathematical Soc.. This book was released on 2021-09-27 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its inception around 1980, the theory of perverse sheaves has been a vital tool of fundamental importance in geometric representation theory. This book, which aims to make this theory accessible to students and researchers, is divided into two parts. The first six chapters give a comprehensive account of constructible and perverse sheaves on complex algebraic varieties, including such topics as Artin's vanishing theorem, smooth descent, and the nearby cycles functor. This part of the book also has a chapter on the equivariant derived category, and brief surveys of side topics including étale and ℓ-adic sheaves, D-modules, and algebraic stacks. The last four chapters of the book show how to put this machinery to work in the context of selected topics in geometric representation theory: Kazhdan-Lusztig theory; Springer theory; the geometric Satake equivalence; and canonical bases for quantum groups. Recent developments such as the p-canonical basis are also discussed. The book has more than 250 exercises, many of which focus on explicit calculations with concrete examples. It also features a 4-page “Quick Reference” that summarizes the most commonly used facts for computations, similar to a table of integrals in a calculus textbook.
Download or read book Exact Categories and Categories of Sheaves written by M. Barr and published by Springer. This book was released on 2006-11-15 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: