EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mechanistic empirical Pavement Design Guide

Download or read book Mechanistic empirical Pavement Design Guide written by American Association of State Highway and Transportation Officials and published by AASHTO. This book was released on 2008 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Asphalt Materials Characterization in Support of Implementation of the Proposed Mechanistic empirical Pavement Design Guide

Download or read book Asphalt Materials Characterization in Support of Implementation of the Proposed Mechanistic empirical Pavement Design Guide written by and published by . This book was released on 2007 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proposed Mechanistic-Empirical Pavement Design Guide (MEPDG) procedure is an improved methodology for pavement design and evaluation of paving materials. Since this new procedure depends heavily on the characterization of the fundamental engineering properties of paving materials, a thorough material characterization of mixes used in Virginia is needed to use the MEPDG to design new and rehabilitated flexible pavements. The primary objective of this project was to perform a full hot-mix asphalt (HMA) characterization in accordance with the procedure established by the proposed MEPDG to support its implementation in Virginia. This objective was achieved by testing a sample of surface, intermediate, and base mixes. The project examined the dynamic modulus, the main HMA material property required by the MEPDG, as well as creep compliance and tensile strength, which are needed to predict thermal cracking. In addition, resilient modulus tests, which are not required by the MEPDG, were also performed on the different mixes to investigate possible correlations between this test and the dynamic modulus. Loose samples for 11 mixes (4 base, 4 intermediate, and 3 surface mixes) were collected from different plants across Virginia. Representative samples underwent testing for maximum theoretical specific gravity, asphalt content using the ignition oven method, and gradation of the reclaimed aggregate. Specimens for the various tests were then prepared using the Superpave gyratory compactor with a target voids in total mix (VTM) of 7% ± 1% (after coring and/or cutting). The investigation confirmed that the dynamic modulus test is an effective test for determining the mechanical behavior of HMA at different temperatures and loading frequencies. The test results showed that the dynamic modulus is sensitive to the mix constituents (aggregate type, asphalt content, percentage of recycled asphalt pavement, etc.) and that even mixes of the same type (SM-9.5A, IM-19.0A, and BM 25.0) had different measured dynamic modulus values because they had different constituents. The level 2 dynamic modulus prediction equation reasonably estimated the measured dynamic modulus; however, it did not capture some of the differences between the mixes captured by the measured data. Unfortunately, the indirect tension strength and creep tests needed for the low-temperature cracking model did not produce very repeatable results; this could be due to the type of extensometers used for the test. Based on the results of the investigation, it is recommended that the Virginia Department of Transportation use level 1 input data to characterize the dynamic modulus of the HMA for projects of significant impact. The dynamic modulus test is easy to perform and gives a full characterization of the asphalt mixture. Level 2 data (based on the default prediction equation) could be used for smaller projects pending further investigation of the revised prediction equation incorporated in the new MEPDG software/guide. In addition, a sensitivity analysis is recommended to quantify the effect of changing the dynamic modulus on the asphalt pavement design. Since low-temperature cracking is not a widespread problem in Virginia, use of level 2 or 3 indirect tensile creep and strength data is recommended at this stage.

Book Guide for the Local Calibration of the Mechanistic empirical Pavement Design Guide

Download or read book Guide for the Local Calibration of the Mechanistic empirical Pavement Design Guide written by and published by AASHTO. This book was released on 2010 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.

Book Mechanistic empirical Pavement Design Guide Implementation Plan

Download or read book Mechanistic empirical Pavement Design Guide Implementation Plan written by Todd E. Hoerner and published by . This book was released on 2007 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: As AASH is expected to eventually adopt the MEPDG at its primary pavement design method, it is critical that the SDDOT become familiar with the MEPGD documentation and associated design software. The research conducted under this project was a first step toward achieving this goal.

Book Investigation Into Key Pavement Materials and Local Calibration on MEPDG

Download or read book Investigation Into Key Pavement Materials and Local Calibration on MEPDG written by Changjun Zhou (Professor of civil engineering) and published by . This book was released on 2013 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: The release of Mechanistic-Empirical Pavement Design Guide (MEPDG) in 2004 has been leading a transition from empirically-based pavement design to a mechanical-empirical procedure. The pavement performance prediction models in the MEPDG combines design inputs such as material properties, traffic, and climate to the observed field performance. Since the prediction models were primarily calibrated through inputs and pavement performance data from Long Term Pavement Performance database, local calibrations were highly recommended due to the potential differences between national and local conditions. Key properties of pavement materials were investigated for the local calibration of the MEPDG, including the coefficient of thermal expansion (CTE) of cement concrete and the resilient modulus of soils. CTE values and other properties of concrete from eight concrete plants were investigated. A micromechanical model was proposed to predict concrete CTE considering the time and energy exhausted experimental methods. The thermal stress analysis was conducted on a composite material composed of aggregate and cement paste. Aggregate gradation was incorporated into the concrete CTE prediction model. The proposed model was validated by experimental data. Sensitivity analysis was also performed to explore the major factors affecting concrete CTE. The MEPDG utilizes the generalized model to describe the subgrade stiffness. Coefficients of the generalized model were regressed from the cyclic triaxial load test data for soils in Tennessee. Also the coefficients were correlated with soil physical properties and employed in evaluating the seasonal variation of subgrade resilient modulus. The influences of seasonal variation in subgrade resilient modulus on pavement performance were explored and found significant. Therefore, seasonal variation of soil resilient modulus should be considered in pavement design and analysis in MEPDG. The highway pavement sections in the Tennessee pavement management system were analyzed using the MEPDG version 1.1. This analysis indicates that the national calibrated models predict pavement performance poorly in comparison with measured data. Local calibrations on rutting transfer functions were conducted on the two main types of pavements, i.e., asphalt overlay on cement concrete pavement and asphalt overlay on asphalt pavement. With the local coefficients provided, the MEPDG provides better agreement between predicted and measured rutting.

Book Proceedings of GeoShanghai 2018 International Conference  Transportation Geotechnics and Pavement Engineering

Download or read book Proceedings of GeoShanghai 2018 International Conference Transportation Geotechnics and Pavement Engineering written by Xianming Shi and published by Springer. This book was released on 2018-05-03 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the fourth volume of the proceedings of the 4th GeoShanghai International Conference that was held on May 27 - 30, 2018. This volume, entitled “Transportation Geotechnics and Pavement Engineering”, represents the recent advances and technologies in transportation geotechnics and pavement engineering. This book covers a wide range of topics, from transportation geotechnics, to geomechanics at various length scales, to pavement materials and structures. The book offers a unique mix of numerical modeling studies, experimental studies, and case studies from industry. It may be of interest to researchers and practitioners in the fields of transportation engineering and pavement engineering. Each of the papers included in this book received at least two positive peer reviews. The editors would like to express their sincerest appreciation to all of the anonymous reviewers all over the world, for their diligent work.

Book AASHTO Guide for Design of Pavement Structures  1993

Download or read book AASHTO Guide for Design of Pavement Structures 1993 written by American Association of State Highway and Transportation Officials and published by AASHTO. This book was released on 1993 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design related project level pavement management - Economic evaluation of alternative pavement design strategies - Reliability / - Pavement design procedures for new construction or reconstruction : Design requirements - Highway pavement structural design - Low-volume road design / - Pavement design procedures for rehabilitation of existing pavements : Rehabilitation concepts - Guides for field data collection - Rehabilitation methods other than overlay - Rehabilitation methods with overlays / - Mechanistic-empirical design procedures.

Book Laboratory Study of Concrete Properties to Support Implementation of the New AASHTO Mechanistic empirical Pavement Design Guide

Download or read book Laboratory Study of Concrete Properties to Support Implementation of the New AASHTO Mechanistic empirical Pavement Design Guide written by and published by . This book was released on 2012 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sensitivity Analyses of Flexible Pavement Performance in VT  NY and MA Using the Mechanistic Empirical Pavement Design Guide

Download or read book Sensitivity Analyses of Flexible Pavement Performance in VT NY and MA Using the Mechanistic Empirical Pavement Design Guide written by I. Mark Nogaj and published by . This book was released on 2011 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Materials and Pavement Performance Prediction II

Download or read book Advances in Materials and Pavement Performance Prediction II written by K. Anupam and published by CRC Press. This book was released on 2020-12-08 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inspired from the legacy of the previous four 3DFEM conferences held in Delft and Athens as well as the successful 2018 AM3P conference held in Doha, the 2020 AM3P conference continues the pavement mechanics theme including pavement models, experimental methods to estimate model parameters, and their implementation in predicting pavement performance. The AM3P conference is organized by the Standing International Advisory Committee (SIAC), at the time of this publication chaired by Professors Tom Scarpas, Eyad Masad, and Amit Bhasin. Advances in Materials and Pavement Performance Prediction II includes over 111 papers presented at the 2020 AM3P Conference. The technical topics covered include: - rigid pavements - pavement geotechnics - statistical and data tools in pavement engineering - pavement structures - asphalt mixtures - asphalt binders The book will be invaluable to academics and engineers involved or interested in pavement engineering, pavement models, experimental methods to estimate model parameters, and their implementation in predicting pavement performance.

Book Calibration and Validation of the Enhanced Integrated Climatic Model for Pavement Design

Download or read book Calibration and Validation of the Enhanced Integrated Climatic Model for Pavement Design written by C. E. Zapata and published by Transportation Research Board National Research. This book was released on 2008 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This report summarizes the results of research to evaluate, calibrate, and validate the Enhanced Integrated Climatic Model (EICM) incorporated in the original Version 0.7 (July 2004 release) of the Mechanistic-Empirical Pavement Design Guide (MEPDG) software with measured materials data from the Long-Term Pavement Performance Seasonal Monitoring Program (LTPP SMP) pavement sections. The report further describes subsequent changes made to the EICM to improve its prediction of moisture equilibrium for granular bases. The report will be of particular interest to pavement design engineers in state highway agencies and industry ..."--Foreword.

Book Evaluation of Long term Pavement Performance  LTTP  Climatic Data for Use in Mechanistic empirical Pavement Design Guide MEPDG  Calibration and Other Pavement Analysis

Download or read book Evaluation of Long term Pavement Performance LTTP Climatic Data for Use in Mechanistic empirical Pavement Design Guide MEPDG Calibration and Other Pavement Analysis written by and published by . This book was released on 2015 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improvements in the Long-Term Pavement Performance (LTPP) Program's climate data are needed to support current and future research into climate effects on pavement materials, design, and performance. The calibration and enhancement of the Mechanistic-Empirical Pavement Design Guide (MEPDG) is just one example of these emerging needs. A newly emerging climate data source, the Modern-Era Retrospective Analysis for Research and Applications (MERRA), developed by the National Aeronautics and Space Administration (NASA) for its own in-house modeling needs, provides continuous hourly weather data starting in 1979 on a relatively fine-grained uniform grid. MERRA is based on a reanalysis model that combines computed model fields (e.g., atmospheric temperatures) with ground-, ocean-, atmospheric-, and satellite-based observations that are distributed irregularly in space and time. MERRA data are available at an hourly temporal resolution and 0.5 degrees latitude by 0.67 degrees longitude (approximately 31.1 by 37.30 mi at mid-latitudes) spatial resolution over the entire globe. MERRA data were compared against the best available ground-based observations both statistically and in terms of effects on pavement performance as predicted using the MEPDG. These analyses included a systematic quantitative evaluation of the sensitivity of MEPDG performance predictions to variations in fundamental climate parameters. More extensive analysis of MERRA data included additional statistical analysis comparing operating weather station (OWS) and MERRA data, evaluation of the correctness of MEPDG surface shortwave radiation (SSR) calculations and comparison of MEPDG pavement performance predictions using OWS and MERRA climate data for more sections. The principal conclusion from these evaluations was that the MERRA climate data were as good and in many cases substantially better than equivalent ground-based OWS data. Given these many benefits and very few if any significant limitations, MERRA is strongly recommended as the new future source for climate data in LTPP. Recommendations are provided for incorporating hourly MERRA data into the LTPP database.

Book Evaluation of LTPP Climatic Data for Use in Mechanistic Empirical Pavement Design Guide  MEPDG  Calibration and Other Pavement Analysis

Download or read book Evaluation of LTPP Climatic Data for Use in Mechanistic Empirical Pavement Design Guide MEPDG Calibration and Other Pavement Analysis written by Charles Warren Schwartz and published by . This book was released on 2015 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling and Design of Flexible Pavements and Materials

Download or read book Modeling and Design of Flexible Pavements and Materials written by Dallas N. Little and published by Springer. This book was released on 2017-09-25 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook lays out the state of the art for modeling of asphalt concrete as the major structural component of flexible pavements. The text adopts a pedagogy in which a scientific approach, based on materials science and continuum mechanics, predicts the performance of any configuration of flexible roadways subjected to cyclic loadings. The authors incorporate state-of the-art computational mechanics to predict the evolution of material properties, stresses and strains, and roadway deterioration. Designed specifically for both students and practitioners, the book presents fundamentally complex concepts in a clear and concise way that aids the roadway design community to assimilate the tools for designing sustainable roadways using both traditional and innovative technologies.