EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Semiempirical Methods of Electronic Structure Calculation

Download or read book Semiempirical Methods of Electronic Structure Calculation written by Gerald Segal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: If one reflects upon the range of chemical problems accessible to the current quantum theoretical methods for calculations on the electronic structure of molecules, one is immediately struck by the rather narrow limits imposed by economic and numerical feasibility. Most of the systems with which experimental photochemists actually work are beyond the grasp of ab initio methods due to the presence of a few reasonably large aromatic ring systems. Potential energy surfaces for all but the smallest molecules are extremely expensive to produce, even over a restricted group of the possible degrees of freedom, and molecules containing the higher elements of the periodic table remain virtually untouched due to the large numbers of electrons involved. Almost the entire class of molecules of real biological interest is simply out of the question. In general, the theoretician is reduced to model systems of variable appositeness in most of these fields. The fundamental problem, from a basic computational point of view, is that large molecules require large numbers of basis functions, whether Slater type orbitals or Gaussian functions suitably contracted, to provide even a modestly accurate description of the molecular electronic environment. This leads to the necessity of dealing with very large matrices and numbers of integrals within the Hartree-Fock approximation and quickly becomes both numerically difficult and uneconomic.

Book Semiempirical Methods of Electronic Structure Calculation

Download or read book Semiempirical Methods of Electronic Structure Calculation written by Gerald Segal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: If one reflects upon the range of chemical problems accessible to the current quantum theoretical methods for calculations on the electronic structure of molecules, one is immediately struck by the rather narrow limits imposed by economic and numerical feasibility. Most of the systems with which experimental photochemists actually work are beyond the grasp of ab initio methods due to the presence of a few reasonably large aromatic ring systems. Potential energy surfaces for all but the smallest molecules are extremely expensive to produce, even over a restricted group of the possible degrees of freedom, and molecules containing the higher elements of the periodic table remain virtually untouched due to the large numbers of electrons involved. Almost the entire class of molecules of real biological interest is simply out of the question. In general, the theoretician is reduced to model systems of variable appositeness in most of these fields. The fundamental problem, from a basic computational point of view, is that large molecules require large numbers of basis functions, whether Slater type orbitals or Gaussian functions suitably contracted, to provide even a modestly accurate description of the molecular electronic environment. This leads to the necessity of dealing with very large matrices and numbers of integrals within the Hartree-Fock approximation and quickly becomes both numerically difficult and uneconomic.

Book Semiempirical Methods of Electronic Structure Calculation

Download or read book Semiempirical Methods of Electronic Structure Calculation written by Gerald A. Segal and published by . This book was released on 1977 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Methods of Electronic Structure Calculations

Download or read book Methods of Electronic Structure Calculations written by Michael Springborg and published by Wiley. This book was released on 2000-07-26 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic-structure calculations of the properties of specific materials have become increasingly important over the last 30 years. Although several books on the subject have been published, it is rare to find one that covers in detail both the traditional quantum chemistry and the solid-state physics methods of electronic-structure calculations. This title bridges that gap, focusing equally on both types of method, including density-functional and Hartree-Fock-based approaches. The book is aimed at final-year undergraduate and postgraduate students of both chemistry and of physics. It describes in detail the fundamentals behind the various methods that are used in calculating electronic properties of materials, and that to some extent are commercially available. It should also be of interest to professional scientists working in related theoretical or experimental fields.

Book Electronic States of Molecules and Atom Clusters

Download or read book Electronic States of Molecules and Atom Clusters written by G. Del Re and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Methods of Electronic Structure Theory

Download or read book Methods of Electronic Structure Theory written by Henry F. Schaefer and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: These two volumes deal with the quantum theory of the electronic structure of molecules. Implicit in the term ab initio is the notion that approximate solutions of Schrödinger's equation are sought "from the beginning," i. e. , without recourse to experimental data. From a more pragmatic viewpoint, the distin guishing feature of ab initio theory is usually the fact that no approximations are involved in the evaluation of the required molecular integrals. Consistent with current activity in the field, the first of these two volumes contains chapters dealing with methods per se, while the second concerns the application of these methods to problems of chemical interest. In asense, the motivation for these volumes has been the spectacular recent success of ab initio theory in resolving important chemical questions. However, these applications have only become possible through the less visible but equally important efforts of those develop ing new theoretical and computational methods and models. Henry F Schaefer Vll Contents Contents of Volume 4 XIX Chapter 1. Gaussian Basis Sets for Molecular Calculations Thom. H. Dunning, Ir. and P. Ieffrey Hay 1. Introduction . . . . . . . . . . . . . . . . 1 1. 1. Slater Functions and the Hydrogen Moleeule 1 1. 2. Gaussian Functions and the Hydrogen Atom 3 2. Hartree-Fock Calculations on the First Row Atoms 5 2. 1. Valence States of the First Row Atoms 6 7 2. 2. Rydberg States of the First Row Atoms 9 2. 3.

Book Electronic Structure Calculations on Graphics Processing Units

Download or read book Electronic Structure Calculations on Graphics Processing Units written by Ross C. Walker and published by John Wiley & Sons. This book was released on 2016-02-16 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics provides an overview of computing on graphics processing units (GPUs), a brief introduction to GPU programming, and the latest examples of code developments and applications for the most widely used electronic structure methods. The book covers all commonly used basis sets including localized Gaussian and Slater type basis functions, plane waves, wavelets and real-space grid-based approaches. The chapters expose details on the calculation of two-electron integrals, exchange-correlation quadrature, Fock matrix formation, solution of the self-consistent field equations, calculation of nuclear gradients to obtain forces, and methods to treat excited states within DFT. Other chapters focus on semiempirical and correlated wave function methods including density fitted second order Møller-Plesset perturbation theory and both iterative and perturbative single- and multireference coupled cluster methods. Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics presents an accessible overview of the field for graduate students and senior researchers of theoretical and computational chemistry, condensed matter physics and materials science, as well as software developers looking for an entry point into the realm of GPU and hybrid GPU/CPU programming for electronic structure calculations.

Book Electronic Structure Calculations for Solids and Molecules

Download or read book Electronic Structure Calculations for Solids and Molecules written by Jorge Kohanoff and published by Cambridge University Press. This book was released on 2006-06-29 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic structure problems are studied in condensed matter physics and theoretical chemistry to provide important insights into the properties of matter. This 2006 graduate textbook describes the main theoretical approaches and computational techniques, from the simplest approximations to the most sophisticated methods. It starts with a detailed description of the various theoretical approaches to calculating the electronic structure of solids and molecules, including density-functional theory and chemical methods based on Hartree-Fock theory. The basic approximations are thoroughly discussed, and an in-depth overview of recent advances and alternative approaches in DFT is given. The second part discusses the different practical methods used to solve the electronic structure problem computationally, for both DFT and Hartree-Fock approaches. Adopting a unique and open approach, this textbook is aimed at graduate students in physics and chemistry, and is intended to improve communication between these communities. It also serves as a reference for researchers entering the field.

Book Molecular Orbitals and Their Energies  Studied by the Semiempirical HAM Method

Download or read book Molecular Orbitals and Their Energies Studied by the Semiempirical HAM Method written by Lindholm E. (Einar) and published by Springer. This book was released on 1985 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals and Sensing Applications of 2D Materials

Download or read book Fundamentals and Sensing Applications of 2D Materials written by Chandra Sekhar Rout and published by Woodhead Publishing. This book was released on 2019-06-15 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals and Sensing Applications of 2D Materials provides a comprehensive understanding of a wide range of 2D materials. Examples of fundamental topics include: defect and vacancy engineering, doping and advantages of 2D materials for sensing, 2D materials and composites for sensing, and 2D materials in biosystems. A wide range of applications are addressed, such as gas sensors based on 2D materials, electrochemical glucose sensors, biosensors (enzymatic and non-enzymatic), and printed, stretchable, wearable and flexible biosensors. Due to their sub-nanometer thickness, 2D materials have a high packing density, thus making them suitable for the fabrication of thin film based sensor devices. Benefiting from their unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), 2D layered nanomaterials have shown great potential in designing high performance sensor devices. Provides a comprehensive overview of 2D materials systems that are relevant to sensing, including transition metal dichalcogenides, metal oxides, graphene and other 2D materials system Includes information on potential applications, such as flexible sensors, biosensors, optical sensors, electrochemical sensors, and more Discusses graphene in terms of the lessons learned from this material for sensing applications and how these lessons can be applied to other 2D materials

Book Computational Chemistry

    Book Details:
  • Author : Errol G. Lewars
  • Publisher : Springer Science & Business Media
  • Release : 2007-05-08
  • ISBN : 0306483912
  • Pages : 474 pages

Download or read book Computational Chemistry written by Errol G. Lewars and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational chemistry has become extremely important in the last decade, being widely used in academic and industrial research. Yet there have been few books designed to teach the subject to nonspecialists. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics is an invaluable tool for teaching and researchers alike. The book provides an overview of the field, explains the basic underlying theory at a meaningful level that is not beyond beginners, and it gives numerous comparisons of different methods with one another and with experiment. The following concepts are illustrated and their possibilities and limitations are given: - potential energy surfaces; - simple and extended Hückel methods; - ab initio, AM1 and related semiempirical methods; - density functional theory (DFT). Topics are placed in a historical context, adding interest to them and removing much of their apparently arbitrary aspect. The large number of references, to all significant topics mentioned, should make this book useful not only to undergraduates but also to graduate students and academic and industrial researchers.

Book Annual Reports in Computational Chemistry

Download or read book Annual Reports in Computational Chemistry written by and published by Elsevier. This book was released on 2015-11-29 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annual Reports in Computational Chemistry provides timely and critical reviews of important topics in computational chemistry as applied to all chemical disciplines. Topics covered include quantum chemistry, molecular mechanics, force fields, chemical education, and applications in academic and industrial settings. Focusing on the most recent literature and advances in the field, each article covers a specific topic of importance to computational chemists. Quantum chemistry Molecular mechanics Force fields Chemical education and applications in academic and industrial settings

Book Chemical and Biochemical Applications

Download or read book Chemical and Biochemical Applications written by Pierre Laszlo and published by Elsevier. This book was released on 2012-12-02 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: NMR of Newly Accessible Nuclei, Volume 1: Chemical and Biochemical Applications is a 10-chapter text that explores the properties, advantages, developments, and chemical and biochemical applications of NMR technique. This book describes first the operation of an NMR spectrometer under its two aspects, namely, the instrumental and the computational aspects. The next chapters are devoted to some of the most important pulse sequences. The discussion then shifts to the various factors determining the position of the observed absorption and those responsible for the various relaxation processes. The last chapters deal with the specific applications of NMR, including in cation salvation, calcium-binding proteins, polyelectrolyte systems, halogens, and antibiotic ionophores. This book is of value to inorganic and analytical chemists, and biophysicists.

Book Electronic Structure Calculations on Graphics Processing Units

Download or read book Electronic Structure Calculations on Graphics Processing Units written by Ross C. Walker and published by John Wiley & Sons. This book was released on 2016-04-18 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics provides an overview of computing on graphics processing units (GPUs), a brief introduction to GPU programming, and the latest examples of code developments and applications for the most widely used electronic structure methods. The book covers all commonly used basis sets including localized Gaussian and Slater type basis functions, plane waves, wavelets and real-space grid-based approaches. The chapters expose details on the calculation of two-electron integrals, exchange-correlation quadrature, Fock matrix formation, solution of the self-consistent field equations, calculation of nuclear gradients to obtain forces, and methods to treat excited states within DFT. Other chapters focus on semiempirical and correlated wave function methods including density fitted second order Møller-Plesset perturbation theory and both iterative and perturbative single- and multireference coupled cluster methods. Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics presents an accessible overview of the field for graduate students and senior researchers of theoretical and computational chemistry, condensed matter physics and materials science, as well as software developers looking for an entry point into the realm of GPU and hybrid GPU/CPU programming for electronic structure calculations.

Book Electronic Structure and Properties of Transition Metal Compounds

Download or read book Electronic Structure and Properties of Transition Metal Compounds written by Isaac B. Bersuker and published by John Wiley & Sons. This book was released on 2010-12-01 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: With more than 40% new and revised materials, this second edition offers researchers and students in the field a comprehensive understanding of fundamental molecular properties amidst cutting-edge applications. Including ~70 Example-Boxes and summary notes, questions, exercises, problem sets, and illustrations in each chapter, this publication is also suitable for use as a textbook for advanced undergraduate and graduate students. Novel material is introduced in description of multi-orbital chemical bonding, spectroscopic and magnetic properties, methods of electronic structure calculation, and quantum-classical modeling for organometallic and metallobiochemical systems. This is an excellent reference for chemists, researchers and teachers, and advanced undergraduate and graduate students in inorganic, coordination, and organometallic chemistry.

Book Lectures On Methods Of Electronic Structure Calculations   Proceedings Of The Miniworkshop On  Methods Of Electronic Structure Calculations  And Working Group On  Disordered Alloys

Download or read book Lectures On Methods Of Electronic Structure Calculations Proceedings Of The Miniworkshop On Methods Of Electronic Structure Calculations And Working Group On Disordered Alloys written by Ole Krogh Andersen and published by World Scientific. This book was released on 1995-02-23 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developments in the density functional theory and the methods of electronic structure calculations have made it possible to carry out ab-initio studies of a variety of materials efficiently and at a predictable level. This book covers many of those state-of-the-art developments and their applications to ordered and disordered materials, surfaces and interfaces and clusters, etc.

Book Semi empirical Methods of Quantum Chemistry

Download or read book Semi empirical Methods of Quantum Chemistry written by Joanna Sadlej and published by . This book was released on 1985 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: