EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Self Assemble Behavior of Triblock Copolymers in Solution

Download or read book Self Assemble Behavior of Triblock Copolymers in Solution written by Imad Ud Din and published by LAP Lambert Academic Publishing. This book was released on 2011-12 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aqueous solutions of two triblock copolymers of poly(oxybutylene/oxyethylene /oxybutylene) were studied by surface tensiometry, viscometry and dynamic laser light scattering techniques at various temperatures (293, 303, 313 and 323K).Effect of block architecture and temperature on surface and miceller properties was also studied. Critical micelle concentration (CMC) and thermodynamics of micellization were determined by surface tensiometry. Surface activity of these triblock copolymers was studied by measuring surface parameter i.e surface pressure ( ), surface excess concentration ( ), area per molecule (oA), of polymer and standard Gibb's free energy of adsorption ( Gads) at different temperature. Miceller parameter like CMC, surface tension at CMC ( CMC) were determined. Thermodynamic parameters, standard free energy of micellization ( Gmic), standard entropy of micellization ( Smic) and enthalpy ( Hmic) was calculated from CMC value at different temperature.Viscometry was used to determine intrinsic viscosity ( ) and intermicellar interactions (KH) using Huggins's equation. Dynamic light scattering was used for determination of hydrodynamic radius (Rh)."

Book Design and Characterization of Self assembled Nanostructures of Block Copolymers in Solution

Download or read book Design and Characterization of Self assembled Nanostructures of Block Copolymers in Solution written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-assembling amphiphilic block copolymers have been studied extensively due to their ability to form a wide range of morphologies including spheres, cylinders, and vesicles. Changing the molecular composition of the block copolymer, the relative block lengths, and the solution conditions can alter the assembly behavior. The main goal of this dissertation is to investigate the self-assembly of two different amphiphilic block copolymer systems in an effort to controllably make different assembled structures. Amphiphilic, triblock copolymers of poly(acrylic acid)- b -poly(methyl acrylate)- b -polystyrene (PAA-PMA-PS) in tetrahydrofuran (THF)/ water solvent mixtures were studied. The solution conditions and the relative block lengths were varied, and complexation with an amine counterion was used to influence the self-assembly of these materials. A variety of structures were observed including phase-separated nanoparticles, bulk-like lamellar phase separation, spherical, cylindrical, and disk-like micelles, as well as toroidal assemblies. The specific structure formed was dependent on the composition of the triblock copolymer, the amount and valency of the counterion present, and the THF to water volume ratio. The structure of polymer nanoparticles and networks formed in low water content systems was examined. The size of the nanoparticles and whether separated nanoparticles vs. an interconnected network was formed was controlled via solvent composition. Importantly, both the nanoparticles and network phases contained their own inherent nanostructure due to local phase separation of the block copolymers. This phase behavior within the nanoparticles could be tuned, i.e. porous or lamellar internal structure, by changing the valency of the amine counterion. Cryo-transmission electron microscopy (TEM), traditional TEM, and neutron scattering were used to examine these samples. In addition to these triblock copolymers, amphiphilic diblock copolypeptides of hydrophobic leucine (L) and hydrophilic lysine (K) with poly(ethylene glycol) side groups were investigated. The effect of the copolypeptide design on the resulting morphology was studied by examining diblock compositions with different block lengths and secondary structures. It was determined that the secondary structure of these peptides plays a significant role in influencing the assembly of these materials.

Book Block Copolymers in Solution

Download or read book Block Copolymers in Solution written by Ian W. Hamley and published by John Wiley & Sons. This book was released on 2005-09-02 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique text discusses the solution self-assembly of block copolymers and covers all aspects from basic physical chemistry to applications in soft nanotechnology. Recent advances have enabled the preparation of new materials with novel self-assembling structures, functionality and responsiveness and there have also been concomitant advances in theory and modelling. The present text covers the principles of self-assembly in both dilute and concentrated solution, for example micellization and mesophase formation, etc., in chapters 2 and 3 respectively. Chapter 4 covers polyelectrolyte block copolymers - these materials are attracting significant attention from researchers and a solid basis for understanding their physical chemistry is emerging, and this is discussed. The next chapter discusses adsorption of block copolymers from solution at liquid and solid interfaces. The concluding chapter presents a discussion of selected applications, focussing on several important new concepts. The book is aimed at researchers in polymer science as well as industrial scientists involved in the polymer and coatings industries. It will also be of interest to scientists working in soft matter self-assembly and self-organizing polymers.

Book Block Copolymers in Nanoscience

Download or read book Block Copolymers in Nanoscience written by Massimo Lazzari and published by John Wiley & Sons. This book was released on 2007-06-27 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first book to take a detailed look at one of the key focal points where nanotechnology and polymers meet provides both an introductory view for beginners as well as in-depth knowledge for specialists in the various research areas involved. It investigates all types of application for block copolymers: as tools for fabricating other nanomaterials, as structural components in hybrid materials and nanocomposites, and as functional materials. The multidisciplinary approach covers all stages from chemical synthesis and characterization, presenting applications from physics and chemistry to biology and medicine, such as micro- and nanolithography, membranes, optical labeling, drug delivery, as well as sensory and analytical uses.

Book Amphiphilic Block Copolymers

Download or read book Amphiphilic Block Copolymers written by P. Alexandridis and published by Elsevier. This book was released on 2000-10-18 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is the belief of the editors of this book that the recognition of block copolymers as being amphiphilic molecules and sharing common features with other well-studied amphiphiles will prove beneficial to both the surfactant and the polymer communities. An aim of this book is to bridge the two communities and cross-fertilise the different fields. To this end, leading researchers in the field of amphiphilic block copolymer self-assembly, some having a background in surfactant chemistry, and others with polymer physics roots, have agreed to join forces and contribute to this book.The book consists of four entities. The first part discusses theoretical considerations behind the block copolymer self-assembly in solution and in the melt. The second part provides case studies of self-assembly in different classes of block copolymers (e.g., polyethers, polyelectrolytes) and in different environments (e.g., in water, in non-aqueous solvents, or in the absence of solvents). The third part presents experimental tools, ranging from static (e.g., small angle neutron scattering) to dynamic (e.g., rheology), which can prove valuable in the characterization of block copolymer self-assemblies. The fourth part offers a sampling of current applications of block copolymers in, e.g., formulations, pharmaceutics, and separations, applications which are based on the unique self-assembly properties of block copolymers.

Book Synthesis and Self assembly of Multiple Thermoresponsive Amphiphilic Block Copolymers

Download or read book Synthesis and Self assembly of Multiple Thermoresponsive Amphiphilic Block Copolymers written by Jan Weiss and published by . This book was released on 2011 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present thesis, the self-assembly of multi thermoresponsive block copolymers in dilute aqueous solution was investigated by a combination of turbidimetry, dynamic light scattering, TEM measurements, NMR as well as fluorescence spectroscopy. The successive conversion of such block copolymers from a hydrophilic into a hydrophobic state includes intermediate amphiphilic states with a variable hydrophilic-to-lipophilic balance. As a result, the self-organization is not following an all-or-none principle but a multistep aggregation in dilute solution was observed. The synthesis of double thermoresponsive diblock copolymers as well as triple thermoresponsive triblock copolymers was realized using twofold-TMS labeled RAFT agents which provide direct information about the average molar mass as well as residual end group functionality from a routine proton NMR spectrum. First a set of double thermosensitive diblock copolymers poly(N-n-propylacrylamide)-b-poly(N-ethylacrylamide) was synthesized which differed only in the relative size of the two blocks. Depending on the relative block lengths, different aggregation pathways were found. Furthermore, the complementary TMS-labeled end groups served as NMR-probes for the self-assembly of these diblock copolymers in dilute solution. Reversible, temperature sensitive peak splitting of the TMS-signals in NMR spectroscopy was indicative for the formation of mixed star-/flower-like micelles in some cases. Moreover, triple thermoresponsive triblock copolymers from poly(N-n-propylacrylamide) (A), poly(methoxydiethylene glycol acrylate) (B) and poly(N-ethylacrylamide) (C) were obtained from sequential RAFT polymerization in all possible block sequences (ABC, BAC, ACB). Their self-organization behavior in dilute aqueous solution was found to be rather complex and dependent on the positioning of the different blocks within the terpolymers. Especially the localization of the low-LCST block (A) had a large influence on the aggregation behavior. Above the first cloud point, aggregates were only observed when the A block was located at one terminus. Once placed in the middle, unimolecular micelles were observed which showed aggregation only above the second phase transition temperature of the B block. Carrier abilities of such triple thermosensitive triblock copolymers tested in fluorescence spectroscopy, using the solvatochromic dye Nile Red, suggested that the hydrophobic probe is less efficiently incorporated by the polymer with the BAC sequence as compared to ABC or ACB polymers above the first phase transition temperature. In addition, due to the problem of increasing loss of end group functionality during the subsequent polymerization steps, a novel concept for the one-step synthesis of multi thermoresponsive block copolymers was developed. This allowed to synthesize double thermoresponsive di- and triblock copolymers in a single polymerization step. The copolymerization of different N-substituted maleimides with a thermosensitive styrene derivative (4-vinylbenzyl methoxytetrakis(oxyethylene) ether) led to alternating copolymers with variable LCST. Consequently, an excess of this styrene-based monomer allowed the synthesis of double thermoresponsive tapered block copolymers in a single polymerization step.

Book Self assembly Behavior in Hydrophilic Block Copolymers

Download or read book Self assembly Behavior in Hydrophilic Block Copolymers written by Clara Valverde Serrano and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block copolymers are receiving increasing attention in the literature. Reports on amphiphilic block copolymers have now established the basis of their self-assembly behavior: aggregate sizes, morphologies and stability can be explained from the absolute and relative block lengths, the nature of the blocks, the architecture and also solvent selectiveness. In water, self-assembly of amphiphilic block copolymers is assumed to be driven by the hydrophobic. The motivation of this thesis is to study the influence on the self-assembly in water of A b B type block copolymers (with A hydrophilic) of the variation of the hydrophilicity of B from non-soluble (hydrophobic) to totally soluble (hydrophilic). Glucose-modified polybutadiene-block-poly(N-isopropylacrylamide) copolymers were prepared and their self-assembly behavior in water studied. The copolymers formed vesicles with an asymmetric membrane with a glycosylated exterior and poly(N-isopropylacrylamide) on the inside. Above the low critical solution temperature (LCST) of poly(N-isopropylacrylamide), the structure collapsed into micelles with a hydrophobic PNIPAM core and glycosylated exterior. This collapse was found to be reversible. As a result, the structures showed a temperature-dependent interaction with L-lectin proteins and were shown to be able to encapsulate organic molecules. Several families of double hydrophilic block copolymers (DHBC) were prepared. The blocks of these copolymers were biopolymers or polymer chimeras used in aqueous two-phase partition systems. Copolymers based on dextran and poly(ethylene glycol) blocks were able to form aggregates in water. Dex6500-b-PEG5500 copolymer spontaneously formed vesicles with PEG as the "less hydrophilic" barrier and dextran as the solubilizing block. The aggregates were found to be insensitive to the polymer's architecture and concentration (in the dilute range) and only mildly sensitive to temperature. Variation of the block length, yielded different morphologies. A longer PEG chain seemed to promote more curved aggregates following the inverse trend usually observed in amphiphilic block copolymers. A shorter dextran promoted vesicular structures as usually observed for the amphiphilic counterparts. The linking function was shown to have an influence of the morphology but not on the self-assembly capability in itself. The vesicles formed by dex6500-b-PEG5500 showed slow kinetics of clustering in the presence of Con A lectin. In addition both dex6500-b-PEG5500 and its crosslinked derivative were able to encapsulate fluorescent dyes. Two additional dextran-based copolymers were synthesized, dextran-b-poly(vinyl alcohol) and dextran-b-poly(vinyl pyrrolidone). The study of their self-assembly allowed to conclude that aqueous two-phase systems (ATPS) is a valid source of inspiration to conceive DHBCs capable of self-assembling. In the second part the principle was extended to polypeptide systems with the synthesis of a poly(N-hydroxyethylglutamine)-block-poly(ethylene glycol) copolymer. The copolymer that had been previously reported to have emulsifying properties was able to form vesicles by direct dissolution of the solid in water. Last, a series of thermoresponsive copolymers were prepared, dextran-b-PNIPAMm. These polymers formed aggregates below the LCST. Their structure could not be unambiguously elucidated but seemed to correspond to vesicles. Above the LCST, the collapse of the PNIPAM chains induced the formation of stable objects of several hundreds of nanometers in radius that evolved with increasing temperature. The cooling of these solution below LCST restored the initial aggregates. This self-assembly of DHBC outside any stimuli of pH, ionic strength, or temperature has only rarely been described in the literature. This work constituted the first formal attempt to frame the phenomenon. Two reasons were accounted for the self-assembly of such systems: incompatibility of the polymer pairs forming the two blocks (enthalpic) and a considerable solubility difference (enthalpic and entropic). The entropic contribution to the positive Gibbs free energy of mixing is believed to arise from the same loss of conformational entropy that is responsible for "the hydrophobic effect" but driven by a competition for water of the two blocks. In that sense this phenomenon should be described as the "hydrophilic effect".

Book Phase Behavior of Model ABC Triblock Copolymers

Download or read book Phase Behavior of Model ABC Triblock Copolymers written by Joon Chatterjee and published by . This book was released on 2007 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Self assembly of Silicon containing Triblock Copolymer and Terpolymers

Download or read book Self assembly of Silicon containing Triblock Copolymer and Terpolymers written by Sangho Lee (S. M.) and published by . This book was released on 2019 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: The block copolymer (BCP) self-assembly has garnered significant interest due to its ability to generate periodic nanostructures with a variety of morphologies. Compared to diblock copolymers that have been extensively studied to form the conventional morphologies such as spheres, cylinders, and lamellae depending on the block volume fraction, more complex polymer architectures are expected to offer additional degrees of freedom and a wider range of structures. Solvent vapor annealing (SVA) using a continuous gas flow system allows a precise control over the annealing condition, which can capture intermediate morphologies including perforated lamellae and gyroids and can create unique nanostructures that have not been observed in diblock copolymers. Combining with self-consistent field theory (SCFT) modeling and in situ grazing-incidence small-angle X-ray scattering (GISAXS) measurement, the phase behavior of advanced polymer architectures can be revealed in details. Here, the self-assembly behavior of silicon-containing triblock copolymer and terpolymers in multi-layered films under SVA is presented. Using both experimental and SCFT approaches, the phase behavior of poly(stryrene-b-dimethylsiloxane-b-styrene) (PS-b-PDMS-b-PS or SDS32) thin films was investigated as a function of the as-cast film thickness and the ratio of two different solvent vapors, toluene and heptane. In comparison with diblock PS-b-PDMS with same molecular weight, the SDS32 offers a simple route to produce a diversity of well-ordered bilayer structures with smaller feature sizes, including the formation of bilayer perforated lamellae over a large process window. In addition, the morphological evolution of core-shell cylinder-forming triblock terpolymers during SVA was monitored in situ using GISAXS. A reversible order-order phase transformation between spheres and cylinders occurred during the annealing process. One of the final morphologies consisted of the regions of in-plane cylinders, with the majority of the film comprising vertical core-shell cylinders passing through perforated lamellae of poly 1,1-dimethyl silacyclobutane (PDMSB).

Book Nanostructured Polymer Blends

Download or read book Nanostructured Polymer Blends written by Gity Mir Mohamad Sadeghi and published by Elsevier Inc. Chapters. This book was released on 2013-11-28 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block copolymers (BCPs) consist of two or more chemically different polymers connected covalently, and are polymer alloys. Due to their thermodynamic incompatibility and chain connectivity, the phase separation between two (or more) blocks occurs only in a tens of nanometers range. Nanostructures are based on block copolymer self-assembly. They are functional nanomaterials less than 100nm in size and have received extensive scientific and technological attention due to their potential applications in electronic, biomedical, and optical materials. This chapter examines a variety of different synthetic strategies for preparation of linear diblock copolymers by anionic polymerization. Triblocks can be synthesized according to an appropriate synthetic pathway, depending on the monomers used and their sequence in the triblock chain. Nonlinear block copolymers including star block copolymers, graft copolymers, miktoarm star copolymers, cyclic block copolymers, and other complex architectures are explained. Microphase separation drives BCPs to self-assemble, resulting in ordered nanostructures, including spheres, cylinders, gyroids, and lamellae, depending on the composition of the BCP. In nanotechnology, self-assembly (SA) underlies various types of molecular structures built from nanoparticles, nanotubes, or nanorods. Supramolecular structures generated from amphiphilic block copolymers are characterized by a slow rate of intermicellar chain exchange which makes them interesting for a variety of applications. Basic principles of self-assembly and micellization of block copolymers in dilute solution, methods for stabilization of the macromolecular aggregates, are discussed. Stabilized nanoparticles, the so-called “smart materials,” which show responses to environmental changes (pH, temperature, ionic strength, etc.), are presented with a focus on their applications.

Book Self assembly of Block Copolymers in Dilute Solution

Download or read book Self assembly of Block Copolymers in Dilute Solution written by Kathleen A. Cogan and published by . This book was released on 1991 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Self Assembly

    Book Details:
  • Author : Ramanathan Nagarajan
  • Publisher : John Wiley & Sons
  • Release : 2019-01-07
  • ISBN : 1119001366
  • Pages : 364 pages

Download or read book Self Assembly written by Ramanathan Nagarajan and published by John Wiley & Sons. This book was released on 2019-01-07 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the state-of-the-art of the diverse self-assembly systems Self-Assembly: From Surfactants to Nanoparticles provides an effective entry for new researchers into this exciting field while also giving the state of the art assessment of the diverse self-assembling systems for those already engaged in this research. Over the last twenty years, self-assembly has emerged as a distinct science/technology field, going well beyond the classical surfactant and block copolymer molecules, and encompassing much larger and complex molecular, biomolecular and nanoparticle systems. Within its ten chapters, each contributed by pioneers of the respective research topics, the book: Discusses the fundamental physical chemical principles that govern the formation and properties of self-assembled systems Describes important experimental techniques to characterize the properties of self-assembled systems, particularly the nature of molecular organization and structure at the nano, meso or micro scales. Provides the first exhaustive accounting of self-assembly derived from various kinds of biomolecules including peptides, DNA and proteins. Outlines methods of synthesis and functionalization of self-assembled nanoparticles and the further self-assembly of the nanoparticles into one, two or three dimensional materials. Explores numerous potential applications of self-assembled structures including nanomedicine applications of drug delivery, imaging, molecular diagnostics and theranostics, and design of materials to specification such as smart responsive materials and self-healing materials. Highlights the unifying as well as contrasting features of self-assembly, as we move from surfactant molecules to nanoparticles. Written for students and academic and industrial scientists and engineers, by pioneers of the research field, Self-Assembly: From Surfactants to Nanoparticles is a comprehensive resource on diverse self-assembly systems, that is simultaneously introductory as well as the state of the art.

Book Solution Self assembly of Block Copolymers

Download or read book Solution Self assembly of Block Copolymers written by Nitin Sharma and published by . This book was released on 2011 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Kinetic Assembly of Block Copolymers in Solution Helical Cylindrical Micelles and Patchy Nanoparticles

Download or read book Kinetic Assembly of Block Copolymers in Solution Helical Cylindrical Micelles and Patchy Nanoparticles written by Sheng Zhong and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: There is always an interest to understand how molecules behave under different conditions. One application of this knowledge is to self-assemble molecules into increasingly complex structures in a simple fashion. Self-assembly of amphiphilic block copolymer in solution has produced a large variety of nanostructures through the manipulation in polymer chemistry, assembly environment, and additives. Moreover, some reports suggest the formation of many polymeric assemblies is driven by kinetic process. The goal of this dissertation is to study the influence of kinetics on the assembly of block copolymer. The study shows kinetic control can be a very effective way to make novel polymeric nanostructures. Two examples discussed here are helical cylindrical micelles and patchy nanoparticles. Helical cylindrical micelles are made from the co-assembly of amphiphilic triblock copolymer poly(acrylic acid)- block -poly(methyl acrylate)- block -polystyrene and organoamine molecules in a mixture of tetrahydrofuran (THF) and water (H 2 O). This system has already shown promise of achieving many assembled structures. The unique aspects about this system are the use of amine molecules to complex with acid groups and the existence of cosolvent system. Application of amine molecules offers a convenient control over assembled morphology and the introduction of PMA-PS selective solvent, THF, promotes the mobility of the polymer chains. In this study, multivalent organoamine molecules, such as diethylenetriamine and triethylenetetramine, are used to interact with block copolymer in THF/water mixture. As expected, the assembled morphologies are dependent on the polymer architecture, selection and quantity of the organoamine molecules, and solution composition. Under the right conditions, unprecedented, multimicrometer-long, supramolecular helical cylindrical micelles are formed. Both single-stranded and double-stranded helices are found in the same system. These helical structures share uniform structural parameters, including the width of the micelles, width of the helix, and the pitch distance. There is no preference to the handedness, and both handednesses are observed, which is understandable since there are no chiral molecules or specific binding effects applied during the assembly. The helical structure is a product of kinetic process. Cryogenic transmission electron microscopy has been employed to monitor the morphological transformation. The study indicates there are two complicated but reproducible kinetic pathways to form the helices. One pathway involves the stacks of bended cylinders at early stages and the subsequent interconnection of these bended cylinders. Spherical micelles bud off of the interconnected nanostructure as the final step towards a defect-free helix. Another kinetic pathway shows very short helices are formed at first and aligned via head-to-tail style in the solution, and the subsequent sequential addition of these short helices results in prolonged mature helices. By using a ninhydrin-staining technique, amine molecules within the micellar corona are visualized and confirmed to preferentially locate in the inner side of the helical turns. The aggregation of amine molecules provides a strong attraction force due to electrostatic association between oppositely charged amine and acid groups and accumulation of hydrogen bonding among amine molecules to coil the cylindrical micelles into helical twisting features which are stabilized by the repulsion forces due to the chain packing frustration within the hydrophobic core, steric hindrance of amine molecules as well as the Coulomb repulsion of the excess charged amine groups. The formation mechanism of the helix offers the feasibility to manipulate the helical pitch distance and formation kinetics. The helical pitch distance can be enlarged or shrunk by varying the type and amount of amine molecules used in assembly, introducing inorganic salts, and changing pH. Luckily, the helical structure can be preserved permanently by inducing the amide reaction between amine and carboxylic acid groups. The kinetics of the helix is also subject to many factors, including used amine molecules, inorganic salts and preparation procedure. The aging time for the helix can be either reduced or prolonged. Furthermore, even though the helical formation is pathway-dependent, helical formation can still be triggered from extended cylindrical micelles or stacks of disklike micelles as long as a right condition is applied. Another strategy for kinetic assembly of block copolymer is presented as well. A novel patchy nanoparticle has been produced following this strategy. The patches are formed on the surface of polymeric colloids due to the phase separation of two chemically unlike segments. Certain level of mobility of the polymer chains is required for the blocks to segregate into patches. More importantly, the number and distribution geometry of the patches are related to the particle size. Future efforts are needed to control the particle size in order to manufacture uniform nanoparticles with desired patch patterns for the applications in nanotechnology, drug delivery and nanodevices.

Book Structures and Dynamics of Self Assembled Organized Functional Polymers in Solution

Download or read book Structures and Dynamics of Self Assembled Organized Functional Polymers in Solution written by and published by . This book was released on 1998 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fruitful results were achieved by investigating the structure and dynamics of self-assembled diblock and triblock copolymers by means of a combination of physical techniques, including static and dynamic light scattering, small angle x-ray scattering, small angle neutron scattering and atomic force microscopy. The polymer colloids are able to form core-shell micelles in a closed association process, as well as flower-like and more open-structured aggregates, depending on the molecular architecture, composition and solvent selectivity of the block. A detailed study on even a few selected samples of Pluronic polyols consisting of EPE type triblock copolymers in aqueous solution has resulted in the development of a new separation medium for DNA capillary electrophoresis where E and P are, respectively, oxyethylene and oxypropylene. By taking advantage of our knowledge on colloid physics, narrow size distribution polymeric microspheres with superparamagnetic magnetite cores are being developed. The polymeric shells contain active sites which can be modified chemically, making the microspheres possible candidates as drug delivery or magnetic resonance imaging agents. Finally, we have developed a centrifuge ball viscometer capable of measuring the viscosity of polymer melts, including that of poly(tetrafluoroethylene) (also known as Teflon).

Book Block Copolymers II

Download or read book Block Copolymers II written by Volker Abetz and published by Springer Science & Business Media. This book was released on 2005-12-02 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: . A.J. M ller, V. Balsamo, M.L. Arnal: Nucleation and Crystallization in Diblock and Triblock Copolymers.- 2 J.-F. Gohy: Block Copolymer Micelles.- 3 M.A. Hillmyer: Nanoporous Materials from Block Copolymer Precursors.- 4 M. Li, C. Coenjarts, C.K. Ober: Patternable Block Copolymers.-