EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Selection of Drought tolerant Soybean Lines Using a Field Screening Method and Identification of QTLs for Slow Wilting and Nitrogen Fixation Associated with Drought tolerance

Download or read book Selection of Drought tolerant Soybean Lines Using a Field Screening Method and Identification of QTLs for Slow Wilting and Nitrogen Fixation Associated with Drought tolerance written by Mirta Beatriz Dalzotto and published by . This book was released on 2016 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drought causes significant yield reductions in soybean. The development of drought-tolerant cultivars is an effective alternative to overcome this abiotic stress. Slow wilting, prolonged nitrogen fixation, and minimal yield reduction under water stress play an important role in evaluating breeding materials. Despite advances in knowledge about plant responses to drought conditions, there is little information on effective methodologies for phenotype screening in the field, and some QTLs have been identified for drought tolerance. Field screenings under drought and irrigated conditions are necessary to detect drought tolerant lines. In addition, QTLs and molecular makers associated with drought tolerance traits will greatly facilitate the development of tolerant lines through marker-assisted selection (MAS). The objectives of this study were: 1) to evaluate whether selection of high-yielding lines under irrigation in the preliminary stage is a positive predictor of the performance of these lines under drought conditions, and 2) to identify/confirm QTLs associated with slow wilting and nitrogen fixation for drought tolerance. For the first objective, yield performances of 87 genotypes derived from three different populations were evaluated under rain-fed conditions versus standard irrigation. The second objective was to identify QTLs associated with slow wilting, shoot ureides and nitrogen concentrations in soybeans. For this objective, 148 lines from an F4-derived population (R07-7044 x R01-581) were screened with SNP markers and molecular analysis was conducted. Results for the first project showed four different types of yield performance on the lines. The high-yielding lines under full irrigation also had high yields under drought indicating that the selection of high-yielding lines in initial stages under irrigation is a good indicator of the profitable yielding lines under moderate drought conditions. In the second project, results showed two new QTLs for shoot nitrogen on chromosomes 6 and 11, and confirmed two shoot ureide QTLs on chromosomes 10 and 13. Four new QTLs for wilting were identified on chromosomes 11, 13, 14, and 18. These newly confirmed QTLs and molecular markers will be useful for marker-assisted selection for drought tolerance improvement in a soybean breeding program.

Book Selecting Drought Tolerant Soybean Genotypes Using QTLs Associated with Shoot Ureide and Nitrogen Concentrations

Download or read book Selecting Drought Tolerant Soybean Genotypes Using QTLs Associated with Shoot Ureide and Nitrogen Concentrations written by Alejandro Bolton and published by . This book was released on 2013 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: In soybean, nitrogen fixation is more sensitive to drought than other physiological processes like photosynthesis. The sensitivity of nitrogen fixation to drought has been associated with high shoot concentrations of ureide and nitrogen under well-watered conditions. Previous research by Hwang et al. (2013) detected quantitative trait loci (QTLs) in a KS4895 by Jackson population associated with shoot ureide and nitrogen concentrations. The present research evaluated the use of these QTLs in selecting genotypes with drought tolerant nitrogen fixation. Our objectives were to compare actual versus expected phenotype of recombinant inbreed lines (RILs) selected using molecular markers, and to evaluate the effects of shoot nitrogen and ureide concentrations on nitrogen fixation and yield under well-watered and drought conditions. We also evaluated differences in ureide concentration in four near-isogenic line sets that were developed based upon preliminary QTL data for ureide concentration. Isolines did not differ in ureide concentration, and subsequently we determined that preliminary QTLs were not associated with shoot ureide concentration. In 2011, field experiments were conducted in Fayetteville using 12 RILs selected using preliminary QTLs. Selection based on preliminary QTL information did not result in the expected phenotypes for ureide and nitrogen concentrations. Under severe drought conditions, however, RILs with low well-watered ureide and nitrogen concentrations had an increase in growth rate, nitrogen fixation rate, and yield (r2>0.50, P0.001). In Fayetteville and Keiser 2012 field experiments, RILs were selected using QTL detected by Hwang et al. (2013). Selection resulted in the expected phenotypes for ureide and nitrogen concentrations. Under well watered conditions, genotypes with alleles for high ureide and nitrogen concentrations showed higher nitrogen fixation rates, higher percentages of nitrogen derived from the atmosphere and higher yields than genotypes with alleles for low ureide and nitrogen concentrations (r20.20, P

Book High Throughput Phenotypic Evaluation of Drought related Traits in Soybean

Download or read book High Throughput Phenotypic Evaluation of Drought related Traits in Soybean written by Hua Bai and published by . This book was released on 2016 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drought limits crop growth and yield in soybean. Rapid and effective methods of screening large numbers of soybean lines for drought tolerance are urgently needed. Two experiments were conducted to evaluate the effects of drought in soybean during reproductive stages. In the first experiment five genotypes from maturity groups 2 through 5 were tested under well-irrigated and drought conditions. Beginning at R5, leaf samples were taken for nitrogen concentration analysis. Pictures were taken across the top of each plot to determine the intensity of greenness using the Dark Green Color Index (DGCI). Aerial photographs were also taken to determine aerial DGCI values. Leaf nitrogen concentration decreased as plants approached maturity and was closely related to ground DGCI. Additionally, ground DGCI and aerial DGCI values followed similar trends. The aerial DGCI measurements had advantages over ground DGCI measurements in that it allowed discernment between both water treatments. This opens up the possibility of using aerial DGCI to screen genotypes that senesce more slowly under drought. In the second experiment, the effects of drought in soybean were evaluated by aerial infrared image analysis, carbon isotope discrimination (Delta 13C) and oxygen isotope composition (delta 18O). Five fast-and five slow-wilting genotypes derived from a cross of Benning × PI416937 were evaluated under three water treatments that included a full and two deficit-irrigation treatments of increasing severity (deficit 1, and 2). After canopy closure, aerial infrared images were taken to determine the relative canopy temperature. Soybean leaves sampled at late R5 and seed at harvest were collected to measure Delta 13C (leaf and seed) and delta 18O (seed) as surrogate measurements for water use efficiency (WUE) and transpiration, respectively. As water availability decreased, the Delta 13C values from leaf and seed generally decreased (i.e., higher WUE). In contrast, the delta 18O values and relative canopy temperature generally increased with increasing drought stress. Moreover, slow-wilting genotypes generally had lower Delta 13C, delta 18O and canopy temperature than fast-wilting genotypes. However, delta 18O values were not consistent over years. The results from these two experiments indicate that the determination of DGCI, Delta 13C, and canopy temperature were promising tools for rapid characterization of drought-related traits in soybean.

Book Plant Aquaporins

    Book Details:
  • Author : François Chaumont
  • Publisher : Springer
  • Release : 2017-02-07
  • ISBN : 3319493957
  • Pages : 354 pages

Download or read book Plant Aquaporins written by François Chaumont and published by Springer. This book was released on 2017-02-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aquaporins are channel proteins that facilitate the diffusion of water and small uncharged solutes across cellular membranes. Plant aquaporins form a large family of highly divergent proteins that are involved in many different physiological processes. This book will summarize the recent advances regarding plant aquaporins, their phylogeny, structure, substrate specificity, mechanisms of regulation and roles in various important physiological processes related to the control of water flow and small solute distribution at the cell, tissue and plant level in an ever-changing environment.

Book Genetics of Physiological Traits Associated with Drought Tolerance in Soybean  glycine Max

Download or read book Genetics of Physiological Traits Associated with Drought Tolerance in Soybean glycine Max written by Sumandeep Kaur Bazzer and published by . This book was released on 2020 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soybean (Glycine max L.) is one of the major row crops in the United States, and its production is often limited by drought stress. Physiological traits from exotic germplasm that confer drought tolerance may be useful in improving commercial soybean production. For example, carbon isotope ratio (?13C) is positively correlated with water use efficiency (WUE), and nitrogen isotope ratio (?15N) is negatively correlated with N2 fixation; canopy temperature (CT) is an indicator for genetic variation in transpiration and stomatal conductance. Therefore, the objectives of this research were to identify the genomic regions associated with: (1) ?13C and ?15N using a population of 196 F6-derived recombinant inbred lines (RIL) from PI 416997 × PI 567201D that was phenotyped in four environments, (2) CT and ?13C using a population of 168 F5-derived RILs from KS4895 × Jackson that was phenotyped in multiple environments and irrigation treatments. In the PI 416997 × PI 567201D population, ?13C and ?15N had a wide phenotypic range in all environments, and PI 416997 had higher ?13C and lower ?15N values than PI 567201D. ?13C had high heritability (90%) whereas the heritability of ?15N was relatively lower (35%), indicating that ?15N was more affected by the environment. QTL mapping identified eight loci on seven chromosomes associated with ?13C, and these loci explained between 2.5 to 30% of the phenotypic variation. There were 13 loci on 10 chromosomes associated with ?15N, explaining 1.7 to 14.4% of the phenotypic variation. There were strong interactions between QTLs and environments for ?15N. In the KS4895 × Jackson RIL population, Jackson had a cooler canopy than KS4895, and the heritability of CT had low heritability (31%) across environments. There were 11 loci present on eight chromosomes associated with CT that individually explained 4.6 to 12.3% of the phenotypic variation. The heritability of ?13C in KS4895 × Jackson RIL population heritability was 83% when estimated over environments and over irrigation treatments. A total of 24 QTLs associated with ?13C were identified and clustered in nine genomic loci on seven chromosomes. The identified QTLs for ?13C, ?15N, and CT were co-localized with genomic regions associated with drought tolerance-related traits from previous studies. These genomic regions may be important resources in soybean breeding programs to improve tolerance to drought. Further research is needed to fine map the identified QTLs and validate markers linked with these regions.

Book Screening and Breeding Soybean for Flood Tolerance

Download or read book Screening and Breeding Soybean for Flood Tolerance written by Maria Roberta de Oliveira and published by . This book was released on 2021 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Waterlogging can be detrimental to soybean [Glycine max (L.) Merr.] growth and development, with effects ranging from chlorosis and stunting to yield loss and plant death. Soybean responses to, and the effects of, waterlogging are dependent on the growth stage of the plant at the initiation of waterlogging. The objectives of this study were: (1) to assess the effectiveness of Genomic Selection (GS), Marker Assisted Selection (MAS) and Phenotypic Selection for flood tolerance at the progeny row stage as compared to random selection, for the development of high-yielding flood-tolerant lines; and (2) to compare field-screening and hydroponic greenhouse screening methodologies for hypoxia tolerance. For the first objective, 391 individuals from four populations at the F4:5 generation were either: 1) screened for waterlogging tolerance at the R1 growth stage in observation or first-year yield trial stages; 2) subjected to genomic selection using two different training approaches; 3) underwent marker-assisted selection; or 4) were advanced purely based on agronomic adaptation under non-flooded condition. Subsequently, the tagged selections together with the base populations (control) were entered in a multi-location trial where flood tolerance and yield were assessed, and the responses were compared across the different selection methods. Results from this experiment indicated significant differences between visual selection and the base population, and between genomic selection and base population when long-rows experiment was used in the training set. Random selection and base population were also significantly different on the identification of flood tolerant lines, assessed as tolerance index and probability of discard. Random selection method resulted in the lowest tolerance index and highest probability of discard. We also observed that visual or genomic selection derived from hill plots did not outperform the control in terms of flood tolerance. In addition, all six methods and base populations had similar performance in terms of mean yield. This suggests that breeders must focus on selecting for flood tolerance early in the breeding stages, without major risk of reducing yield potential. For the second objective of this study, a total of 17 soybean genotypes were screened for waterlogging tolerance at the V2 growth stage and under a hydroponic system. Plots of responses by cultivar and test method were analyzed. We observed consistency in results between field and hydroponic system for most of the cultivars, enabling us to discard based on flood susceptibility. Identification of the most efficient selection method for flood tolerance, and the development of a greenhouse screening methodology, will aid plant breeders in developing new flood-tolerant cultivars.

Book Crop Stress and its Management  Perspectives and Strategies

Download or read book Crop Stress and its Management Perspectives and Strategies written by B. Venkateswarlu and published by Springer Science & Business Media. This book was released on 2011-11-22 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crops experience an assortment of environmental stresses which include abiotic viz., drought, water logging, salinity, extremes of temperature, high variability in radiation, subtle but perceptible changes in atmospheric gases and biotic viz., insects, birds, other pests, weeds, pathogens (viruses and other microbes). The ability to tolerate or adapt and overwinter by effectively countering these stresses is a very multifaceted phenomenon. In addition, the inability to do so which renders the crops susceptible is again the result of various exogenous and endogenous interactions in the ecosystem. Both biotic and abiotic stresses occur at various stages of plant development and frequently more than one stress concurrently affects the crop. Stresses result in both universal and definite effects on plant growth and development. One of the imposing tasks for the crop researchers globally is to distinguish and to diminish effects of these stress factors on the performance of crop plants, especially with respect to yield and quality of harvested products. This is of special significance in view of the impending climate change, with complex consequences for economically profitable and ecologically and environmentally sound global agriculture. The challenge at the hands of the crop scientist in such a scenario is to promote a competitive and multifunctional agriculture, leading to the production of highly nourishing, healthy and secure food and animal feed as well as raw materials for a wide variety of industrial applications. In order to successfully meet this challenge researchers have to understand the various aspects of these stresses in view of the current development from molecules to ecosystems. The book will focus on broad research areas in relation to these stresses which are in the forefront in contemporary crop stress research.

Book Plant  Abiotic Stress and Responses to Climate Change

Download or read book Plant Abiotic Stress and Responses to Climate Change written by Violeta Andjelkovic and published by BoD – Books on Demand. This book was released on 2018-05-23 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Climate change is a serious problem influencing agricultural production worldwide and challenging researchers to investigate plant responses and to breed crops for the changed growing conditions. Abiotic stresses are the most important for crop production, affecting about 96.5% of arable land worldwide. These stress factors include high and low temperature, water deficit (drought) and flooding, salinity, heavy metals, UV radiation, light, chemical pollutants, and so on. Since some of the stresses occurred simultaneously, such as heat and water deficit, causing the interactions of physiological processes, novel multidisciplinary solutions are needed. This book provides an overview of the present state in the research of abiotic stresses and molecular, biochemical, and whole plant responses, helping to prevent the negative impact of global climate change.

Book Plant Stress Biology

    Book Details:
  • Author : Bhoopander Giri
  • Publisher : Springer Nature
  • Release : 2021-02-05
  • ISBN : 9811593809
  • Pages : 518 pages

Download or read book Plant Stress Biology written by Bhoopander Giri and published by Springer Nature. This book was released on 2021-02-05 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plants growing in the natural environment battle with a variety of biotic (pathogens infection) and abiotic (salinity, drought, heat and cold stresses etc.) stresses. These physiological stresses drastically affect plant growth and productivity under field conditions. These challenges are likely to grow as a consequences of global climate change and pose a threat to the food security. Therefore, acquaintance with underlying signalling pathways, physiological, biochemical and molecular mechanisms in plants and the role of beneficial soil microorganisms in plant’s stress tolerance are pivotal for sustainable crop production. This volume written by the experts in the stress physiology and covers latest research on plant’s tolerance to abiotic and biotic stresses. It elaborates on the potential of plant-microbe interactions to avoid the damage caused by these stresses. With comprehensive information on theoretical, technical and experimental aspects of plant stress biology, this extensive volume is a valuable resource for researchers, academician and students in the broad field of plant stress biology, physiology, microbiology, environmental and agricultural science.

Book Drought phenotyping in crops  From theory to practice

Download or read book Drought phenotyping in crops From theory to practice written by Philippe Monneveux and published by Frontiers E-books. This book was released on 2014-02-12 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This topic is a unique attempt to simultaneously tackle theoretical and practical aspects in drought phenotyping, through both crop-specific and cross-cutting approaches. It is designed for – and will be of use to – practitioners and postgraduate students in plant science, who are grappling with the challenging task of evaluating germplasm performance under different water regimes. In Part I, different methodologies are presented for accurately characterising environmental conditions, implementing trials, and capturing and analysing the information this generates, regardless of the crop. Part II presents the state-of-art in research on adaptation to drought, and recommends specific protocols to measure different traits in major food crops (focusing on particular cereals, legumes and clonal crops). The topic is part of the CGIAR Generation Challenge Programme’s efforts to disseminate crop research information, tools and protocols, for improving characterisation of environments and phenotyping conditions. The goal is to enhance expertise in testing locations, and to stimulate the development and use of traits related to drought tolerance, as well as innovative protocols for crop characterisation and breeding.

Book Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops

Download or read book Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops written by Matthew A. Jenks and published by Springer Science & Business Media. This book was released on 2009-05-07 with total page 819 pages. Available in PDF, EPUB and Kindle. Book excerpt: With near-comprehensive coverage of new advances in crop breeding for drought and salinity stress tolerance, this timely work seeks to integrate the most recent findings about key biological determinants of plant stress tolerance with modern crop improvement strategies. This volume is unique because is provides exceptionally wide coverage of current knowledge and expertise being applied in drought and salt tolerance research.

Book Drought Adaptation in Cereals

Download or read book Drought Adaptation in Cereals written by Jean-Marcel Ribaut and published by CRC Press. This book was released on 2006-09-08 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to best improve yield in cereal plants—even in dry conditions The impact of drought on crop production can be economically devastating. Drought Adaptation in Cereals provides a comprehensive review of the latest research on the tolerance of cereal crops to water-limited conditions. Renowned experts extensively describe basic concepts and cutting-edge research results to clearly reveal all facets of drought adaptation in cereals. More than simply a fine reference for plant biology and plant improvement under water-limited conditions, this book spotlights the most relevant biological approaches from plant phenotyping to functional genomics. The need to understand plant response to the lack of water is integral to forming strategies to best manage crops. Drought Adaptation in Cereals starts by offering an overview of the biological basis and defines the adaptive mechanisms found in plants under water-limited conditions. Different approaches are presented to provide understanding of plant genetics basics and plant breeding, including phenotyping, physiology, and biotechnology. The book details drought adaptation mechanisms at the cellular, organ, and entire plant levels, focusing on plant metabolism and gene functions. This resource is extensively referenced and contains tables, charts, and figures to clearly present data and enhance understanding. After a foreword by J. O'Toole and a prologue by A. Blum, Drought Adaptation in Cereals presents a full spectrum of informative topics from other internationally respected scientists. These include: drought’s economic impact (P. Heisey) genotype-by-environment interactions (M. Cooper) secondary traits for drought adaptation (P. Monneveux) leaf growth (F. Tardieu) carbon isotope discrimination (T. Condon) drought adaptation in barley (M. Sorrells), maize (M. Sawkins), rice (R. Lafitte), sorghum (A. Borrell) and wheat (M. Reynolds) carbohydrate metabolism (A. Tiessen) the role of abscisic acid (T. Setter) protection mechanisms and stress proteins (L. Mtwisha) genetic basis of ion homeostasis and water deficit (H. Bohnert) transcriptional factors (K. Yamaguchi-Shinozaki) resurrection plants (D. Bartels) Drought Adaptation in Cereals is a unique, vital reference for scientists, educators, and students in plant biology, agronomy, and natural resources management.

Book Grain Legumes

    Book Details:
  • Author : Antonio M. De Ron
  • Publisher : Springer
  • Release : 2015-08-27
  • ISBN : 1493927973
  • Pages : 449 pages

Download or read book Grain Legumes written by Antonio M. De Ron and published by Springer. This book was released on 2015-08-27 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​​​This book is devoted to grain legumes and include eight chapters devoted to the breeding of specific grain legume crops and five general chapters dealing with important topics which are common to most of the species in focus. Soybean is not included in the book as it is commonly considered an oil crop more than a grain legume and is included in the Oil Crops Volume of the Handbook of Plant Breeding.​Legume species belong to the Fabaceae family and are characterized by their fruit, usually called pod. Several species of this family were domesticated by humans, such as soybean, common bean, faba bean, pea, chickpea, lentil, peanut, or cowpea. Some of these species are of great relevance as human and animal food. Food legumes are consumed either by their immature pod or their dry seeds, which have a high protein content. Globally, grain legumes are the most relevant source of plant protein, especially in many countries of Africa and Latin America, but there are some constraints in their production, such as a poor adaptation, pest and diseases and unstable yield. Current research trends in Legumes are focused on new methodologies involving genetic and omic studies, as well as new approaches to the genetic improvement of these species, including the relationships with their symbiotic rhizobia.

Book Advances in Plant Breeding Strategies  Agronomic  Abiotic and Biotic Stress Traits

Download or read book Advances in Plant Breeding Strategies Agronomic Abiotic and Biotic Stress Traits written by Jameel M. Al-Khayri and published by Springer. This book was released on 2016-03-29 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: The basic concept of this book is to examine the use of innovative methods augmenting traditional plant breeding towards the development of new crop varieties under different environmental conditions to achieve sustainable food production. This book consists of two volumes: Volume 1 subtitled Breeding, Biotechnology and Molecular Tools and Volume 2 subtitled Agronomic, Abiotic and Biotic Stress Traits. This is volume 2 which contains 18 chapters highlighting breeding strategies for specific plant traits including improved nutritional and pharmaceutical properties as well as enhanced tolerance to insects, diseases, drought, salinity and temperature extremes expected under predicted global climate change.

Book Plant Breeding for Water Limited Environments

Download or read book Plant Breeding for Water Limited Environments written by Abraham Blum and published by Springer Science & Business Media. This book was released on 2010-11-09 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume will be the only existing single-authored book offering a science-based breeder’s manual directed at breeding for water-limited environments. Plant breeding is characterized by the need to integrate information from diverse disciplines towards the development and delivery of a product defines as a new cultivar. Conventional breeding draws information from disciplines such as genetics, plant physiology, plant pathology, entomology, food technology and statistics. Plant breeding for water-limited environments and the development of drought resistant crop cultivars is considered as one of the more difficult areas in plant breeding while at the same time it is becoming a very pressing issue. This volume is unique and timely in that it develops realistic solutions and protocols towards the breeding of drought resistant cultivars by integrating knowledge from environmental science, plant physiology, genetics and molecular biology.

Book The Potato Crop

    Book Details:
  • Author : Hugo Campos
  • Publisher : Springer Nature
  • Release : 2019-12-03
  • ISBN : 3030286835
  • Pages : 524 pages

Download or read book The Potato Crop written by Hugo Campos and published by Springer Nature. This book was released on 2019-12-03 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. This book provides a fresh, updated and science-based perspective on the current status and prospects of the diverse array of topics related to the potato, and was written by distinguished scientists with hands-on global experience in research aspects related to potato. The potato is the third most important global food crop in terms of consumption. Being the only vegetatively propagated species among the world’s main five staple crops creates both issues and opportunities for the potato: on the one hand, this constrains the speed of its geographic expansion and its options for international commercialization and distribution when compared with commodity crops such as maize, wheat or rice. On the other, it provides an effective insulation against speculation and unforeseen spikes in commodity prices, since the potato does not represent a good traded on global markets. These two factors highlight the underappreciated and underrated role of the potato as a dependable nutrition security crop, one that can mitigate turmoil in world food supply and demand and political instability in some developing countries. Increasingly, the global role of the potato has expanded from a profitable crop in developing countries to a crop providing income and nutrition security in developing ones. This book will appeal to academics and students of crop sciences, but also policy makers and other stakeholders involved in the potato and its contribution to humankind’s food security.

Book Genetics and Genomics of Soybean

Download or read book Genetics and Genomics of Soybean written by Gary Stacey and published by Springer Science & Business Media. This book was released on 2008-05-07 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soybean genomics is of great interest as one of the most economically important crops and a major food source. This book covers recent advances in soybean genome research, including classical, RFLP, SSR, and SNP markers; genomic and cDNA libraries; functional genomics platforms; genetic and physical maps; and gene expression profiles. The book is for researchers and students in plant genetics and genomics, plant biology and pathology, agronomy, and food sciences.