EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Seismic Full waveform Inversion of 3D Field Data

Download or read book Seismic Full waveform Inversion of 3D Field Data written by Tenice Peaches Nangoo and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Full Seismic Waveform Modelling and Inversion

Download or read book Full Seismic Waveform Modelling and Inversion written by Andreas Fichtner and published by Springer Science & Business Media. This book was released on 2010-11-16 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent progress in numerical methods and computer science allows us today to simulate the propagation of seismic waves through realistically heterogeneous Earth models with unprecedented accuracy. Full waveform tomography is a tomographic technique that takes advantage of numerical solutions of the elastic wave equation. The accuracy of the numerical solutions and the exploitation of complete waveform information result in tomographic images that are both more realistic and better resolved. This book develops and describes state of the art methodologies covering all aspects of full waveform tomography including methods for the numerical solution of the elastic wave equation, the adjoint method, the design of objective functionals and optimisation schemes. It provides a variety of case studies on all scales from local to global based on a large number of examples involving real data. It is a comprehensive reference on full waveform tomography for advanced students, researchers and professionals.

Book Full waveform Inversion to 3D Seismic Land Data

Download or read book Full waveform Inversion to 3D Seismic Land Data written by Ahmed Musallam Ali Al-Yaqoobi and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Full-waveform inversion (FWI) is a technique that seeks to find a high-resolution high-fidelity model of the Earth's subsurface that is capable of matching individual seismic waveforms, within an original raw field dataset, trace by trace. The method begins from a best-guess starting model, which is then iteratively improved using a sequence of linearized local inversions to solve a fully non-linear problem. In principle, FWI can be used to recover any physical property that has an influence upon the seismic wavefield, but in practice the technique has been used predominantly to recover P-wave velocity, and this is the route that is followed here. Full-waveform tomographic techniques seek to determine a highly resolved quantitative model of the sub-surface that will ultimately be able to explain the entire seismic wavefield including those phases that conventional processing and migration seek to remove such as refracted arrivals. Although the underlying theory of FWI is well established, its practical application to 3D land data, and especially to seismic data that have been acquired using vibrators, in a form that is effective and robust, is still a subject of intense research. In this study, 2D and 3D FWI techniques have been applied to a vibrator dataset from onshore Oman. Both the raw dataset and the subsurface model cause difficulties for FWI. In particular, the data are noisy, have weak early arrivals, are strongly elastic, and especially are lacking in low-frequency content. The Earth model appears to contain shallow low-velocity layers, and these compromise the use of first-arrival travel-time tomography for the generation of a starting velocity model. The 2D results show good recovery of the shallow part of the velocity models. The results show a low-velocity layer that extends across the velocity model, but lacking in a high-resolution image due to the absence of the third dimension. The seismograms of the final inversion models give a good comparison with the field data and produce a reasonably high correlation coefficient compared to the starting model. An inversion scheme has been developed in this study in which only data from the shorter offsets are initially inverted since these represent the subset of the data that is not cycle skipped. The offset range is then gradually extended as the model improves. The final 3D model contains a strongly developed low-velocity layer in the shallow section. The results from this inversion appear to match p-wave logs from a shallow drill hole, better flatten the gathers, and better stack and migrate the reflection data. The inversion scheme is generic, and should have applications to other similar difficult datasets.

Book 3D Elastic Full Waveform Inversion for Subsurface Characterization Study of a Shallow Seismic Multicomponent Field Data

Download or read book 3D Elastic Full Waveform Inversion for Subsurface Characterization Study of a Shallow Seismic Multicomponent Field Data written by Theodosius Marwan Irnaka and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Full Waveform Inversion (FWI) is an iterative data fitting procedure between the observed data and the synthetic data. The synthetic data is calculated by solving the wave equation. FWI aims at reconstructing the detailed information of the subsurface physical properties. FWI has been rapidly developed in the past decades, thanks to the increase of the computational capability and the development of the acquisition technology. FWI also has been applied in a broad scales including the global, lithospheric, crustal, and near surface scale.In this manuscript, we investigate the inversion of a multicomponent source and receiver near-surface field dataset using a viscoelastic full waveform inversion algorithm for a shallow seismic target. The target is a trench line buried at approximately 1 m depth. We present the pre-processing of the data, including a matching filter correction to compensate for different source and receiver coupling conditions during the acquisition, as well as a dedicated multi-step workflow for the reconstruction of both P-wave and S-wave velocities. Our implementation is based on viscoelastic modeling using a spectral element discretization to accurately account for the wave propagation's complexity in this shallow region. We illustrate the inversion stability by starting from different initial models, either based on dispersion curve analysis or homogeneous models consistent with first arrivals. We recover similar results in both cases. We also illustrate the importance of taking into account the attenuation by comparing elastic and viscoelastic results. The 3D results make it possible to recover and locate precisely the trench line in terms of interpretation. They also exhibit another trench line structure, in a direction forming an angle at 45 degrees with the direction of the targeted trench line. This new structure had been previously interpreted as an artifact in former 2D inversion results. The archaeological interpretation of this new structure is still a matter of discussion.We also perform three different experiments to study the effect of multicomponent data on this FWI application. The first experiment is a sensitivity kernel analysis of several wave packets (P-wave, S-wave, and surface wave) on a simple 3D model based on a Cartesian based direction of source and receiver. The second experiment is 3D elastic inversion based on synthetic (using cartesian direction's source) and field data (using Galperin source) with various component combinations. Sixteen component combinations are analyzed for each case. In the third experiment, we perform the acquisition's decimation based on the second experiment. We demonstrate a significant benefit of multicomponent data FWI in terms of model and data misfit through those experiments. In a shallow seismic scale, the inversions with the horizontal components give a better depth reconstruction. Based on the acquisition's decimation, inversion using heavily decimated 9C seismic data still produce similar results compared to the inversion using 1C seismic of a dense acquisition.

Book Seismic Inversion

    Book Details:
  • Author : Gerard T. Schuster
  • Publisher : SEG Books
  • Release : 2017-07-01
  • ISBN : 156080341X
  • Pages : 377 pages

Download or read book Seismic Inversion written by Gerard T. Schuster and published by SEG Books. This book was released on 2017-07-01 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.

Book Wavefield Inversion

    Book Details:
  • Author : Armand Wirgin
  • Publisher : Springer Science & Business Media
  • Release : 2000-04-19
  • ISBN : 9783211833209
  • Pages : 320 pages

Download or read book Wavefield Inversion written by Armand Wirgin and published by Springer Science & Business Media. This book was released on 2000-04-19 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an up-to-date presentation of a broad range of contemporary problems in inverse scattering involving acoustic, elastic and electromagnetic waves. Descriptions will be given of traditional (but still in use and subject to on-going improvements) and more recent methods for identifying either: a) the homogenized material parameters of (spatially) unbounded or bounded heterogeneous media, or b) the detailed composition (spatial distribution of the material parameters) of unbounded or bounded heterogeneous media, or c) the location, shape, orientation and material characteristics of an object embedded in a wellcharacterized homogeneous, homogenized or heterogeneous unbounded or bounded medium, by inversion of reflected, transmitted or scattered spatiotemporal recorded waveforms resulting from the propagation of probe radiation within the medium.

Book Offset dependent Reflectivity

Download or read book Offset dependent Reflectivity written by John P. Castagna and published by SEG Books. This book was released on 1993 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recognizing the need for education and further research in AVO, the editors have compiled an all-encompassing treatment of this versatile technology. In addition to providing a general introduction to the subject and a review of the current state of the art, this unique volume provides useful reference materials and data plus original contributions at the leading edge of AVO technologies.

Book Full 3D Seismic Waveform Inversion

Download or read book Full 3D Seismic Waveform Inversion written by Po Chen and published by Springer. This book was released on 2015-09-10 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a methodology for solving the seismic inverse problem using purely numerical solutions built on 3D wave equations and which is free of the approximations or simplifications that are common in classical seismic inversion methodologies and therefore applicable to arbitrary 3D geological media and seismic source models. Source codes provided allow readers to experiment with the calculations demonstrated and also explore their own applications.

Book Conference on Inverse Scattering  Theory and Application

Download or read book Conference on Inverse Scattering Theory and Application written by J. Bee Bednar and published by SIAM. This book was released on 1983-01-01 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Seismic Imaging  a Practical Approach

Download or read book Seismic Imaging a Practical Approach written by Jean-Luc Mari and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the geophysics of oil exploration and reservoir studies, the surface seismic method is the most commonly used method to obtain a subsurface model in 2 or 3 dimensions. This method plays an increasingly important role in soil investigations for geotechnical, hydrogeological and site characterization studies regarding seismic hazard issues. The goal of this book is to provide a practical guide, using examples from the field, to the application of seismic methods to surface imaging. After reviewing the current state of knowledge in seismic wave propagation, refraction and reflection seismic methods, the book aims to describe how seismic tomography and fullwave form inversion methods can be used to obtain seismic images of the subsurface. Through various synthetic and field examples, the book highlights the benefit of combining different sets of data: refracted waves with reflected waves, and body waves with surface waves. With field data targeting shallow structures, it shows how more accurate geophysical models can be obtained by using the proposed hybrid methods. Finally, it shows how the integration of seismic data (3D survey and VSP), logging data (acoustic logging) and core measurements, combined with a succession of specific and advanced processing techniques, enables the development of a 3D high resolution geological model in depth. In addition to these examples, the authors provide readers with guidelines to carry out these operations, in terms of acquisition, as well as processing and interpretation. In each chapter, the reader will find theoretical concepts, practical rules and, above all, actual application examples. For this reason, the book can be used as a text to accompany course lectures or continuing education seminars. This book aims to promote the exchange of information among geologists, geophysicists, and engineers in geotechnical fields.

Book Shared Earth Modeling

Download or read book Shared Earth Modeling written by John R. Fanchi and published by Elsevier. This book was released on 2002-08-25 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shared Earth Modeling introduces the reader to the processes and concepts needed to develop shared earth models. Shared earth modeling is a cutting-edge methodology that offers a synthesis of modeling paradigms to the geoscientist and petroleum engineer to increase reservoir output and profitability and decrease guesswork. Topics range from geology, petrophysics, and geophysics to reservoir engineering, reservoir simulation, and reservoir management.Shared Earth Modeling is a technique for combining the efforts of reservoir engineers, geophysicists, and petroleum geologists to create a simulation of a reservoir. Reservoir engineers, geophysicists, and petroleum geologists can create separate simulations of a reservoir that vary depending on the technology each scientist is using. Shared earth modeling allows these scientists to consolidate their findings and create an integrated simulation. This gives a more realistic picture of what the reservoir actually looks like, and thus can drastically cut the costs of drilling and time spent mapping the reservoir. - First comprehensive publication about Shared Earth Modeling - Details cutting edge methodology that provides integrated reservoir simulations

Book 3D Elastic Full waveform Inversion

Download or read book 3D Elastic Full waveform Inversion written by Lluis Guasch and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Full Waveform Inversion (FWI) is a depth imaging technique that takes advantage of the full information contained in recorded seismic data. FWI provide high resolution images of subsurface properties, usually seismic velocities or related parameters, although in theory it could image any property used to formulate the wave equation. The computational cost of the methodology has historically limited its application to 3D acoustic approximations but recent developments in hardware capabilities have increased computer power to the point that more realistic approximations are viable. In this work the traditional acoustic approximation is extended to include elastic effects by introducing the elastic wave equation as the governing law that describes wave propagation. I have developed a software based on finite-differences to solve the elastic wave equation in 3D, which I applied in the development of a full-waveform inversion algorithm. The software is fully parallelised for both distributed and shared-memory systems. The first level of parallelisation distributes seismic sources across cluster nodes. Each node solves the 3D elastic wave equation in the whole computational domain. The second level of parallelisation takes advantage of present multi-core computer processor units (CPU) to decompose the computational domain into different volumes that are solved independently by each core. Such parallel design allows the algorithm to handle models of realistic sizes, increasing the computational times only a factor of two compared to those of 3D acoustic full-waveform inversion on the same mesh. I have also implemented a perfectly matched layer absorbing boundary condition to reproduce a semi-infinite model geometry and prevent spurious reflections from the model boundaries from contaminating the modelled wavefields. The inversion algorithm is based upon the adjoint-state method, which I reformulated for the wave equation that I implemented, which was based on particle-velocities and stresses, providing a comparison and demonstration of equivalence with previous developments. To examine the performance of the code, I have inverted several synthetic problems of increasing realism. I have principally used only pressure sources and receivers to assess the potential of the method's application to the most common industry surveys: streamer data for offshore and vertical geophones (only one component) for onshore exploration surveys. The results show that the imaged properties increase with the heterogeneity of the models, due to the increase in P-S-P conversions which provides the main source of information to invert shear-wave velocity models from pressure sources and receivers. It remains to demonstrate the inversion of field datasets and my future research project will focused on achieving this goal.

Book Full Waveform Inversion of 3D Seismic Data

Download or read book Full Waveform Inversion of 3D Seismic Data written by Akela Silverton and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Interpreting Subsurface Seismic Data

Download or read book Interpreting Subsurface Seismic Data written by Rebecca Bell and published by Elsevier. This book was released on 2022-05-27 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interpreting Subsurface Seismic Data presents recent advances in methodologies for seismic imaging and interpretation across multiple applications in geophysics including exploration, marine geology, and hazards. It provides foundational information for context, as well as focussing on recent advances and future challenges. It offers detailed methodologies for interpreting the increasingly vast quantity of data extracted from seismic volumes. Organized into three parts covering foundational context, case studies, and future considerations, Interpreting Subsurface Seismic Data offers a holistic view of seismic data interpretation to ensure understanding while also applying cutting-edge technologies. This view makes the book valuable to researchers and students in a variety of geoscience disciplines, including geophysics, hydrocarbon exploration, applied geology, and hazards. - Presents advanced seismic detection workflows utilized cutting-edge technologies - Integrates geophysics and geology for a variety of applications, using detailed examples - Provides an overview of recent advances in methodologies related to seismic imaging and interpretation

Book Seismic Inversion

    Book Details:
  • Author : Yanghua Wang
  • Publisher : John Wiley & Sons
  • Release : 2016-09-15
  • ISBN : 1119258049
  • Pages : 256 pages

Download or read book Seismic Inversion written by Yanghua Wang and published by John Wiley & Sons. This book was released on 2016-09-15 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seismic inversion aims to reconstruct a quantitative model of the Earth subsurface, by solving an inverse problem based on seismic measurements. There are at least three fundamental issues to be solved simultaneously: non-linearity, non-uniqueness, and instability. This book covers the basic theory and techniques used in seismic inversion, corresponding to these three issues, emphasising the physical interpretation of theoretical concepts and practical solutions. This book is written for master and doctoral students who need to understand the mathematical tools and the engineering aspects of the inverse problem needed to obtain geophysically meaningful solutions. Building on the basic theory of linear inverse problems, the methodologies of seismic inversion are explained in detail, including ray-impedance inversion and waveform tomography etc. The application methodologies are categorised into convolutional and wave-equation based groups. This systematic presentation simplifies the subject and enables an in-depth understanding of seismic inversion. This book also provides a practical guide to reservoir geophysicists who are attempting quantitative reservoir characterisation based on seismic data. Philosophically, the seismic inverse problem allows for a range of possible solutions, but the techniques described herein enable geophysicists to exclude models that cannot satisfy the available data. This book summarises the author’s extensive experience in both industry and academia and includes innovative techniques not previously published.

Book Challenges in Near surface Seismic Full waveform Inversion of Field Data

Download or read book Challenges in Near surface Seismic Full waveform Inversion of Field Data written by Nikolaos Athanasopoulos and published by . This book was released on 2020* with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 3D Full Waveform Inversion of Narrow azimuth Towed streamer Seismic Data

Download or read book 3D Full Waveform Inversion of Narrow azimuth Towed streamer Seismic Data written by Jack Ashley and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: