EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Scaling and Estimation of Earthquake Ground Motion as a Function of the Earthquake Source Parameters and Distance

Download or read book Scaling and Estimation of Earthquake Ground Motion as a Function of the Earthquake Source Parameters and Distance written by D. L. Bernreuter and published by . This book was released on 1981 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Precise Earthquake Source Parameter Estimation

Download or read book Precise Earthquake Source Parameter Estimation written by Annemarie Susan Baltay and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The question of whether earthquakes, as they increase in size, radiate seismic waves more efficiently is at the core of our understanding of the physics of faulting, as well as our ability to mitigate the effects of strong ground motion. If earthquakes have some intrinsic time or length scale that could be observed or modeled, then seismologists could determine the ultimate size of an earthquake just as it begins to rupture. On the other hand, if earthquakes are self-similar, with no intrinsic time or length scale, than any information learned about the plethora of small and intermediate earthquakes can simply be scaled up to predict parameters, such as ground motion, for larger, more devastating earthquakes. Many studies find that apparent stress and stress drop increase with seismic moment, yet others find an independence of these parameters with moment, obeying self-similar earthquake source physics. Source measurements are controversial due to the inherent difficulty in correcting the radiated waves to negate path and site effects, such as attenuation, scattering or amplification. Independent studies of the same earthquake may find seismic energies that differ by an order of magnitude. Methods to estimate source parameters need to account for these effects, or quantify the range of validity for estimates made with uncorrected seismic records. In this work, I precisely estimate the source parameters radiated seismic energy, apparent stress and stress drop, using both relative spectral measures from empirical Green's functions, and close distance acceleration records. Using relative empirical Green's functions, I can handily negate source and path effects, without explicit consideration of anelastic attenuation. Working with data from 8 sequences of earthquakes in the western US and Honshu, Japan, ranging from M 1.8 to Mw 7.1, I find no clear trend of a dependence of apparent stress or stress drop with moment, finding a constant scaled energy, ER/Mo of 3.5x10-5, or apparent stress of ~ 1 MPa, to fit the data well. The average Brune stress drop for these data is ~5 MPa. By using many stations and relative measures, I statistically show self-similar earthquake scaling. However, there are anomalous enervated and energetic events that show individual departure from the overall trend, representing the true variability in earthquake source parameters. I revisit the aRMS stress drop using recent broadband stations and strong motion accelerometers. The aRMS stress drop samples an inherently different portion of the earthquake spectrum than the Brune stress drop, and can be directly related to PGA and hence high-frequency ground motion. While the aRMS stress drop is much simpler and faster to measure, it does not model attenuation, and hence suffers from loss of signal at distances> ~20 km. At close stations, and for large earthquakes, the aRMS stress drop values are very similar to those of the Brune stress drop, yet with reduced error base on corner frequency uncertainty. That the aRMS[not] method yields stable stress drops supports the assumptions behind the formulation: that earthquake acceleration records can be considered random, band-limited, white Gaussian noise, and overall, a self-similar earthquake model. The last portion of this work focuses on five great earthquakes, Mw> 8.5, over the past 7 years. Because they are so rare, seismologists don't have much information about these devastating events. Understanding how they relate to smaller earthquakes will aid in hazard mitigation. I estimate the radiated seismic energy and apparent stress, using a novel, teleseismic empirical Green's function deconvolution. At near distances, great earthquake are too big to model, as effects from one end of the rupture will interfere with those from other parts, and local recordings are often saturated. But at far distances, ~3000 km -- 9000 km, I show that moderate earthquakes, Mw 6.5 -- 7.5 can be used as Green's functions, and are used to correct the mainshocks from path and site effects. Use of several different eGf earthquakes demonstrates the limitations on the method, but also increases the precision of the energy estimates. I find that both P and S waves give consistent energy estimates when using eGf events. Azimuthal dependence of radiated energy indicates expected rupture directivity, and can be modeled using Haskell line sources to understand the rupture process.

Book Extreme Environmental Events

Download or read book Extreme Environmental Events written by and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Complex Faulting Process of Earthquakes

Download or read book The Complex Faulting Process of Earthquakes written by J. Koyama and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: In seismology an earthquake source is described in terms of a fault with a particular rupture size. The faulting process of large earthquakes has been investigated in the last two decades through analyses of long-period seismo grams produced by advanced digital seismometry. By long-period far-field approximation, the earthquake source has been represented by physical parameters such as s~ismic moment, fault dimension and earthquake mag nitude. Meanwhile, destruction often results from strong ground motion due to large earthquakes at short distances. Since periods of strong ground motion are far shorter than those of seismic waves at teleseismic distances, the theory of long-period source process of earthquakes cannot be applied directly to strong ground motion at short distances. The excitation and propagation of high-frequency seismic waves are of special interest in recent earthquake seismology. In particular, the descrip tion and simulation of strong ground motion are very important not only for problems directly relevant to earthquake engineering, but also to the frac ture mechanics of earthquake faulting. Understanding of earthquake sources has been developed by investigating the complexity of faulting processes for the case of large earthquakes. Laboratory results on rock failures have also advanced the understanding of faulting mechanisms. Various attempts have been made to simulate, theoretically and empirically, the propagation of short-period seismic waves in the heterogeneous real earth.

Book Elementary Seismology

Download or read book Elementary Seismology written by Charles Richter and published by . This book was released on 1958 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Earthquake Source Mechanics

Download or read book Earthquake Source Mechanics written by Shamita Das and published by American Geophysical Union. This book was released on 1986 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Earthquake Data in Engineering Seismology

Download or read book Earthquake Data in Engineering Seismology written by Sinan Akkar and published by Springer Science & Business Media. This book was released on 2011-01-03 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses current activities in strong-motion networks around the globe, covering issues related to designing, maintaining and disseminating information from these arrays. The book is divided into three principal sections. The first section includes recent developments in regional and global ground-motion predictive models. It presents discussions on the similarities and differences of ground motion estimations from these models and their application to design spectra as well as other novel procedures for predicting engineering parameters in seismic regions with sparse data. The second section introduces topics about the particular methodologies being implemented in the recently established global and regional strong-motion databanks in Europe to maintain and disseminate the archived accelerometric data. The final section describes major strong-motion arrays around the world and their historical developments. The last three chapters of this section introduce projects carried out within the context of arrays deployed for seismic risk studies in metropolitan areas. Audience: This timely book will be of particular interest for researchers who use accelerometric data extensively to conduct studies in earthquake engineering and engineering seismology.

Book Procedures for Estimating Earthquake Ground Motions

Download or read book Procedures for Estimating Earthquake Ground Motions written by Walter W. Hays and published by . This book was released on 1980 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book NUREG CR

    Book Details:
  • Author : U.S. Nuclear Regulatory Commission
  • Publisher :
  • Release : 1981
  • ISBN :
  • Pages : 88 pages

Download or read book NUREG CR written by U.S. Nuclear Regulatory Commission and published by . This book was released on 1981 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Estimation of Ground Motion Parameters

Download or read book Estimation of Ground Motion Parameters written by and published by . This book was released on 1978 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Improved Seismic Monitoring   Improved Decision Making

Download or read book Improved Seismic Monitoring Improved Decision Making written by National Research Council and published by National Academies Press. This book was released on 2006-01-04 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improved Seismic Monitoringâ€"Improved Decision-Making, describes and assesses the varied economic benefits potentially derived from modernizing and expanding seismic monitoring activities in the United States. These benefits include more effective loss avoidance regulations and strategies, improved understanding of earthquake processes, better engineering design, more effective hazard mitigation strategies, and improved emergency response and recovery. The economic principles that must be applied to determine potential benefits are reviewed and the report concludes that although there is insufficient information available at present to fully quantify all the potential benefits, the annual dollar costs for improved seismic monitoring are in the tens of millions and the potential annual dollar benefits are in the hundreds of millions.

Book Strong Ground Motion Simulation and Earthquake Engineering Applications

Download or read book Strong Ground Motion Simulation and Earthquake Engineering Applications written by Roger E. Scholl and published by . This book was released on 1985 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Strong Ground Motion Seismology

Download or read book Strong Ground Motion Seismology written by Mustafa Özder Erdik and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains selected papers presented at the NATO Advanced Study Institute on "Strong Ground Motion Seismology", held in Ankara, Turkey between June 10 and 21, 1985. The strong ground motion resulting from a major earthquake determines the level of the seismic hazard to enable earthquake engineers to assess the structural performance and the consecutive risks to the property and life, as well as providing detailed information to seismologists about its source mechanism. From the earthquake engineering point the main problem is the specification of a design level ground motion for a given source-site-structure-economic life and risk combination through deterministic and probabilistic approaches. In seismology the strong motion data provide the high frequency information to determine the rupture process and the complexity of the source mechanism. The effects of the propagation path on the strong ground motion is a research area receiving sub stantial attenuation both from earthquake engineers and seismologists. The Institute provided a venue for the treatment of the subject matter by a series of lectures on earthquake source models and near field theories; effects of propagation paths and site conditions, numerical and empirical methods for prediction; data acquisition and analysis; hazard assessment and engineering application.

Book Perspectives on European Earthquake Engineering and Seismology

Download or read book Perspectives on European Earthquake Engineering and Seismology written by Atilla Ansal and published by Springer. This book was released on 2015-08-28 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects 4 keynote and 15 theme lectures presented at the 2nd European Conference on Earthquake Engineering and Seismology (2ECEES), held in Istanbul, Turkey, from August 24 to 29, 2014. The conference was organized by the Turkish Earthquake Foundation - Earthquake Engineering Committee and Prime Ministry, Disaster and Emergency Management Presidency under the auspices of the European Association for Earthquake Engineering (EAEE) and European Seismological Commission (ESC). The book’s nineteen state-of-the-art chapters were written by the most prominent researchers in Europe and address a comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Further topics include engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake-resistant engineering structures, new techniques and technologies, and managing risk in seismic regions. The book also presents the First Professor Inge Lehmann Distinguished Award Lecture given by Prof. Shamita Das in honor of Prof. Dr. Inge Lehmann. The aim of this work is to present the state-of-the art and latest practices in the fields of earthquake engineering and seismology, with Europe’s most respected researchers addressing recent and ongoing developments while also proposing innovative avenues for future research and development. Given its cutting-edge conten t and broad spectrum of topics, the book offers a unique reference guide for researchers in these fields. Audience: This book is of interest to civil engineers in the fields of geotechnical and structural earthquake engineering; scientists and researchers in the fields of seismology, geology and geophysics. Not only scientists, engineers and students, but also those interested in earthquake hazard assessment and mitigation will find in this book the most recent advances.