Download or read book Handbook of Uncertainty Quantification written by Roger Ghanem and published by Springer. This book was released on 2016-05-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.
Download or read book Practical Guide to Applied Conformal Prediction in Python written by Valery Manokhin and published by Packt Publishing Ltd. This book was released on 2023-12-20 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elevate your machine learning skills using the Conformal Prediction framework for uncertainty quantification. Dive into unique strategies, overcome real-world challenges, and become confident and precise with forecasting. Key Features Master Conformal Prediction, a fast-growing ML framework, with Python applications Explore cutting-edge methods to measure and manage uncertainty in industry applications Understand how Conformal Prediction differs from traditional machine learning Book DescriptionIn the rapidly evolving landscape of machine learning, the ability to accurately quantify uncertainty is pivotal. The book addresses this need by offering an in-depth exploration of Conformal Prediction, a cutting-edge framework to manage uncertainty in various ML applications. Learn how Conformal Prediction excels in calibrating classification models, produces well-calibrated prediction intervals for regression, and resolves challenges in time series forecasting and imbalanced data. Discover specialised applications of conformal prediction in cutting-edge domains like computer vision and NLP. Each chapter delves into specific aspects, offering hands-on insights and best practices for enhancing prediction reliability. The book concludes with a focus on multi-class classification nuances, providing expert-level proficiency to seamlessly integrate Conformal Prediction into diverse industries. With practical examples in Python using real-world datasets, expert insights, and open-source library applications, you will gain a solid understanding of this modern framework for uncertainty quantification. By the end of this book, you will be able to master Conformal Prediction in Python with a blend of theory and practical application, enabling you to confidently apply this powerful framework to quantify uncertainty in diverse fields.What you will learn The fundamental concepts and principles of conformal prediction Learn how conformal prediction differs from traditional ML methods Apply real-world examples to your own industry applications Explore advanced topics - imbalanced data and multi-class CP Dive into the details of the conformal prediction framework Boost your career as a data scientist, ML engineer, or researcher Learn to apply conformal prediction to forecasting and NLP Who this book is for Ideal for readers with a basic understanding of machine learning concepts and Python programming, this book caters to data scientists, ML engineers, academics, and anyone keen on advancing their skills in uncertainty quantification in ML.
Download or read book Model Validation and Uncertainty Quantification Volume 3 written by Robert Barthorpe and published by Springer. This book was released on 2018-07-30 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics, 2018, the third volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Uncertainty Quantification in Material Models Uncertainty Propagation in Structural Dynamics Practical Applications of MVUQ Advances in Model Validation & Uncertainty Quantification: Model Updating Model Validation & Uncertainty Quantification: Industrial Applications Controlling Uncertainty Uncertainty in Early Stage Design Modeling of Musical Instruments Overview of Model Validation and Uncertainty
Download or read book Scaling and Uncertainty Analysis in Ecology written by Jianguo Wu and published by Springer Science & Business Media. This book was released on 2006-07-02 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book of its kind – explicitly considering uncertainty and error analysis as an integral part of scaling. The book draws together a series of important case studies to provide a comprehensive review and synthesis of the most recent concepts, theories and methods in scaling and uncertainty analysis. It includes case studies illustrating how scaling and uncertainty analysis are being conducted in ecology and environmental science.
Download or read book Bayesian Learning for Neural Networks written by Radford M. Neal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial "neural networks" are widely used as flexible models for classification and regression applications, but questions remain about how the power of these models can be safely exploited when training data is limited. This book demonstrates how Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional training methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. A practical implementation of Bayesian neural network learning using Markov chain Monte Carlo methods is also described, and software for it is freely available over the Internet. Presupposing only basic knowledge of probability and statistics, this book should be of interest to researchers in statistics, engineering, and artificial intelligence.
Download or read book Applied Predictive Modeling written by Max Kuhn and published by Springer Science & Business Media. This book was released on 2013-05-17 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
Download or read book Uncertainty Quantification and Predictive Computational Science written by Ryan G. McClarren and published by Springer. This book was released on 2018-11-23 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-consequence decision-making throughout the engineering and physical sciences. Constructing sophisticated techniques for prediction from basic building blocks, the book first reviews the fundamentals that underpin later topics of the book including probability, sampling, and Bayesian statistics. Part II focuses on applying Local Sensitivity Analysis to apportion uncertainty in the model outputs to sources of uncertainty in its inputs. Part III demonstrates techniques for quantifying the impact of parametric uncertainties on a problem, specifically how input uncertainties affect outputs. The final section covers techniques for applying uncertainty quantification to make predictions under uncertainty, including treatment of epistemic uncertainties. It presents the theory and practice of predicting the behavior of a system based on the aggregation of data from simulation, theory, and experiment. The text focuses on simulations based on the solution of systems of partial differential equations and includes in-depth coverage of Monte Carlo methods, basic design of computer experiments, as well as regularized statistical techniques. Code references, in python, appear throughout the text and online as executable code, enabling readers to perform the analysis under discussion. Worked examples from realistic, model problems help readers understand the mechanics of applying the methods. Each chapter ends with several assignable problems. Uncertainty Quantification and Predictive Computational Science fills the growing need for a classroom text for senior undergraduate and early-career graduate students in the engineering and physical sciences and supports independent study by researchers and professionals who must include uncertainty quantification and predictive science in the simulations they develop and/or perform.
Download or read book Model Validation and Uncertainty Quantification Volume 3 written by H. Sezer Atamturktur and published by Springer Science & Business Media. This book was released on 2014-04-11 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third volume of eight from the IMAC - XXXII Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Linear Systems Substructure Modelling Adaptive Structures Experimental Techniques Analytical Methods Damage Detection Damping of Materials & Members Modal Parameter Identification Modal Testing Methods System Identification Active Control Modal Parameter Estimation Processing Modal Data
Download or read book Runtime Verification written by Panagiotis Katsaros and published by Springer Nature. This book was released on 2023-11-04 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 23rd International Conference on Runtime Verification, RV 2023, held in Thessaloniki, Greece, during October 3–6, 2023. The 13 full papers and 7 short papers presented in this book together with 4 tutorial papers and 2 invited papers were carefully reviewed and selected from 39 submissions. The RV conference is concerned with all aspects of novel lightweight formal methods to monitor, analyze, and guide the runtime behavior of software and hardware systems. Runtime verification techniques are crucial for system correctness, reliability, and robustness; they provide an additional level of rigor and effectiveness compared to conventional testing and are generally more practical than exhaustive formal verification.
Download or read book Uncertainty Quantification in Multiscale Materials Modeling written by Yan Wang and published by Woodhead Publishing. This book was released on 2020-03-12 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.
Download or read book Mesoscale Models written by Sinisa Mesarovic and published by Springer. This book was released on 2018-11-19 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book helps to answer the following questions: How far have the understanding and mesoscale modeling advanced in recent decades, what are the key open questions that require further research and what are the mathematical and physical requirements for a mesoscale model intended to provide either insight or a predictive engineering tool? It is addressed to young researchers including doctoral students, postdocs and early career faculty,
Download or read book Topics in Model Validation and Uncertainty Quantification Volume 5 written by Todd Simmermacher and published by Springer Science & Business Media. This book was released on 2013-05-30 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics in Model Validation and Uncertainty Quantification, Volume : Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the fifth volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Uncertainty Quantification & Propagation in Structural Dynamics Robustness to Lack of Knowledge in Design Model Validation
Download or read book Understanding Risks and Uncertainties in Energy and Climate Policy written by Haris Doukas and published by Springer. This book was released on 2018-12-10 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book analyzes and seeks to consolidate the use of robust quantitative tools and qualitative methods for the design and assessment of energy and climate policies. In particular, it examines energy and climate policy performance and associated risks, as well as public acceptance and portfolio analysis in climate policy, and presents methods for evaluating the costs and benefits of flexible policy implementation as well as new framings for business and market actors. In turn, it discusses the development of alternative policy pathways and the identification of optimal switching points, drawing on concrete examples to do so. Lastly, it discusses climate change mitigation policies’ implications for the agricultural, food, building, transportation, service and manufacturing sectors.
Download or read book Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines written by Francesco Montomoli and published by Springer. This book was released on 2018-06-21 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces design techniques developed to increase the safety of aircraft engines, and demonstrates how the application of stochastic methods can overcome problems in the accurate prediction of engine lift caused by manufacturing error. This in turn addresses the issue of achieving required safety margins when hampered by limits in current design and manufacturing methods. The authors show that avoiding the potential catastrophe generated by the failure of an aircraft engine relies on the prediction of the correct behaviour of microscopic imperfections. This book shows how to quantify the possibility of such failure, and that it is possible to design components that are inherently less risky and more reliable. This new, updated and significantly expanded edition gives an introduction to engine reliability and safety to contextualise this important issue, evaluates newly-proposed methods for uncertainty quantification as applied to jet engines. Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines will be of use to gas turbine manufacturers and designers as well as CFD practitioners, specialists and researchers. Graduate and final year undergraduate students in aerospace or mathematical engineering may also find it of interest.
Download or read book Multi fidelity Surrogates written by Qi Zhou and published by Springer Nature. This book was released on 2022-11-07 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates two types of static multi-fidelity surrogates modeling approaches, sequential multi-fidelity surrogates modeling approaches, the multi-fidelity surrogates-assisted efficient global optimization, reliability analysis, robust design optimization, and evolutionary optimization. Multi-fidelity surrogates have attracted a significant amount of attention in simulation-based design and optimization in recent years. Some real-life engineering design problems, such as prediction of angular distortion in the laser welding, optimization design of micro-aerial vehicle fuselage, and optimization design of metamaterial vibration isolator, are also provided to illustrate the ability and merits of multi-fidelity surrogates in support of engineering design. Specifically, lots of illustrative examples are adopted throughout the book to help explain the approaches in a more “hands-on” manner. This book is a useful reference for postgraduates and researchers of mechanical engineering, as well as engineers of enterprises in related fields.
Download or read book Quantitative Information Fusion for Hydrological Sciences written by Xing Cai and published by Springer. This book was released on 2008-01-12 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this rapidly evolving world of knowledge and technology, do you ever wonder how hydrology is catching up? Here, two highly qualified scientists edit a volume that takes the angle of computational hydrology and envision one of the science’s future directions – namely, the quantitative integration of high-quality hydrologic field data with geologic, hydrologic, chemical, atmospheric, and biological information to characterize and predict natural systems in hydrological sciences.
Download or read book Multiphase Flow Handbook written by Efstathios Michaelides and published by CRC Press. This book was released on 2016-10-26 with total page 1421 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.